ASIA unversity:Item 310904400/8880
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21656894      線上人數 : 341
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/8880


    題名: Improve neuro-fuzzy learning by attribute reduction
    作者: Chang, Fengming M.;Chan, Chien-Chung
    貢獻者: Department of Information Science and Applications
    關鍵詞: Adaptive systems;Artificial intelligence;Computer networks;Education;Fuzzy inference;Fuzzy logic;Fuzzy neural networks;Fuzzy sets;Fuzzy systems;Neural networks;Set theory;Statistics;Annual meetings;Neuro-fuzzy learning;Rough sets
    日期: 2008
    上傳時間: 2010-04-08 12:36:06 (UTC+0)
    出版者: Asia University
    摘要: Neuro-fuzzy learning is a combination of neural networks and fuzzy systems to learn fuzzy rules from examples. One of the popular tools for neuro-fuzzy learning is the Adaptive Network based Fuzzy Inference Systems (ANFIS) introduced by Jang. It is observed from our past experiments that data sets with more than six attributes (features) may present a challenge to ANFIS learning. Rough set theory introduced by Pawlak has been shown as an effective tool for data reduction. This paper studied how ANFIS learning may benefit from using rough set tools for data reduction. Empirical results show that ANFIS learning from reduced data sets usually has better prediction accuracies and faster learning time.
    關聯: Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS :4531208
    顯示於類別:[行動商務與多媒體應用學系] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    0KbUnknown521檢視/開啟
    179.doc31KbMicrosoft Word338檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋