ASIA unversity:Item 310904400/8880
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21655995      在线人数 : 491
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/8880


    题名: Improve neuro-fuzzy learning by attribute reduction
    作者: Chang, Fengming M.;Chan, Chien-Chung
    贡献者: Department of Information Science and Applications
    关键词: Adaptive systems;Artificial intelligence;Computer networks;Education;Fuzzy inference;Fuzzy logic;Fuzzy neural networks;Fuzzy sets;Fuzzy systems;Neural networks;Set theory;Statistics;Annual meetings;Neuro-fuzzy learning;Rough sets
    日期: 2008
    上传时间: 2010-04-08 12:36:06 (UTC+0)
    出版者: Asia University
    摘要: Neuro-fuzzy learning is a combination of neural networks and fuzzy systems to learn fuzzy rules from examples. One of the popular tools for neuro-fuzzy learning is the Adaptive Network based Fuzzy Inference Systems (ANFIS) introduced by Jang. It is observed from our past experiments that data sets with more than six attributes (features) may present a challenge to ANFIS learning. Rough set theory introduced by Pawlak has been shown as an effective tool for data reduction. This paper studied how ANFIS learning may benefit from using rough set tools for data reduction. Empirical results show that ANFIS learning from reduced data sets usually has better prediction accuracies and faster learning time.
    關聯: Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS :4531208
    显示于类别:[行動商務與多媒體應用學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    0KbUnknown521检视/开启
    179.doc31KbMicrosoft Word338检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈