ASIA unversity:Item 310904400/8793
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21713794      線上人數 : 440
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/8793


    題名: The choquet integral with respect to λ,-measure based on γ-support
    作者: Liu, Hsiang-Chuan;Tu, Yu-Chieh;Chen, Chin-Chun;Weng, Wei-Sheng
    貢獻者: Department of Bioinformatics
    關鍵詞: Control theory;Cybernetics;Integral equations;Learning systems;Mean square error;Robot learning;C-support;Choquet integrals;Cross validations;Fuzzy measure;Fuzzy support;Improved methods;Independent variables;Mean squares;Multicollinearity;Multiple regression models;Real datums;Regression models;Ridge regressions;V-support
    日期: 2008
    上傳時間: 2010-04-08 12:06:10 (UTC+0)
    出版者: Asia University
    摘要: hen the multicollinearity between independent variables occurs in the multiple regression models, its performance will always be poor. The traditional improved method which is always used is the ridge regression model. Recently, the Choquet integral regression model with fuzzy measure can further be exploited to improve this situation. In this study, we found that based on different fuzzy support, the Choquet integral regression model with the same fuzzy measure may have different performances, three kinds of fuzzy supports, C-support, V-support and γ-support proposed by our work were considered. For evaluating the performances of the Choquet integral regression models with P-measure or λ-measure based on above different fuzzy supports, a real data experiment by using a 5-fold cross-validation mean square error (MSE) is conducted. Experimental result shows that the Choquet integral regression model with λ-measure based on γ-support has the best performance. © 2008 IEEE.
    關聯: Proceedings of the 7th International Conference on Machine Learning and Cybernetics, ICMLC 6 :3602-3606
    顯示於類別:[生物資訊與醫學工程學系 ] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    0KbUnknown607檢視/開啟
    219.doc31KbMicrosoft Word455檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋