ASIA unversity:Item 310904400/8793
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21710632      在线人数 : 459
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/8793


    题名: The choquet integral with respect to λ,-measure based on γ-support
    作者: Liu, Hsiang-Chuan;Tu, Yu-Chieh;Chen, Chin-Chun;Weng, Wei-Sheng
    贡献者: Department of Bioinformatics
    关键词: Control theory;Cybernetics;Integral equations;Learning systems;Mean square error;Robot learning;C-support;Choquet integrals;Cross validations;Fuzzy measure;Fuzzy support;Improved methods;Independent variables;Mean squares;Multicollinearity;Multiple regression models;Real datums;Regression models;Ridge regressions;V-support
    日期: 2008
    上传时间: 2010-04-08 12:06:10 (UTC+0)
    出版者: Asia University
    摘要: hen the multicollinearity between independent variables occurs in the multiple regression models, its performance will always be poor. The traditional improved method which is always used is the ridge regression model. Recently, the Choquet integral regression model with fuzzy measure can further be exploited to improve this situation. In this study, we found that based on different fuzzy support, the Choquet integral regression model with the same fuzzy measure may have different performances, three kinds of fuzzy supports, C-support, V-support and γ-support proposed by our work were considered. For evaluating the performances of the Choquet integral regression models with P-measure or λ-measure based on above different fuzzy supports, a real data experiment by using a 5-fold cross-validation mean square error (MSE) is conducted. Experimental result shows that the Choquet integral regression model with λ-measure based on γ-support has the best performance. © 2008 IEEE.
    關聯: Proceedings of the 7th International Conference on Machine Learning and Cybernetics, ICMLC 6 :3602-3606
    显示于类别:[生物資訊與醫學工程學系 ] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    0KbUnknown606检视/开启
    219.doc31KbMicrosoft Word455检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈