ASIA unversity:Item 310904400/8167
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21661655      線上人數 : 308
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/8167


    題名: Predicting subcellular locations of eukaryotic proteins using Bayesian and k-nearest neighbor classifiers
    作者: Han C.W. Hsiao;S.H. Chen;P.C. Chang;Jeffrey J.P. Tsai
    貢獻者: Department of Bioinformatics
    關鍵詞: subcellular location prediction;na?ve Bayesian classifier;k-nearest neighbor classifier;functional domain;feature reduction
    日期: 2008-09
    上傳時間: 2010-03-19 08:25:07 (UTC+0)
    出版者: Asia University
    摘要: Biologically, the function of a protein is highly related to its subcellular location. It
    is of necessity to develop a reliable method for protein subcellular location prediction,
    especially when a large amount of proteins are to be analyzed. Various methods have
    been proposed to perform the task. The results, however, are not satisfactory in terms of
    effectiveness and efficiency. A hybrid approach combining na?ve Bayesian classifier and
    k-nearest neighbor classifier is proposed to classify eukaryotic proteins represented as a
    combination of amino acid composition, dipeptide composition, and functional domain
    composition. Experimental results show that the total accuracy of a set of 17,655 proteins
    can reach up to 91.5%.
    關聯: Journal of Information Science and Engineering 24 (5): 1361-1375
    顯示於類別:[生物資訊與醫學工程學系 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    0KbUnknown394檢視/開啟
    310904400-8167.doc37KbMicrosoft Word251檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋