ASIA unversity:Item 310904400/8167
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21660339      在线人数 : 69
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/8167


    题名: Predicting subcellular locations of eukaryotic proteins using Bayesian and k-nearest neighbor classifiers
    作者: Han C.W. Hsiao;S.H. Chen;P.C. Chang;Jeffrey J.P. Tsai
    贡献者: Department of Bioinformatics
    关键词: subcellular location prediction;na?ve Bayesian classifier;k-nearest neighbor classifier;functional domain;feature reduction
    日期: 2008-09
    上传时间: 2010-03-19 08:25:07 (UTC+0)
    出版者: Asia University
    摘要: Biologically, the function of a protein is highly related to its subcellular location. It
    is of necessity to develop a reliable method for protein subcellular location prediction,
    especially when a large amount of proteins are to be analyzed. Various methods have
    been proposed to perform the task. The results, however, are not satisfactory in terms of
    effectiveness and efficiency. A hybrid approach combining na?ve Bayesian classifier and
    k-nearest neighbor classifier is proposed to classify eukaryotic proteins represented as a
    combination of amino acid composition, dipeptide composition, and functional domain
    composition. Experimental results show that the total accuracy of a set of 17,655 proteins
    can reach up to 91.5%.
    關聯: Journal of Information Science and Engineering 24 (5): 1361-1375
    显示于类别:[生物資訊與醫學工程學系 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    0KbUnknown394检视/开启
    310904400-8167.doc37KbMicrosoft Word251检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈