A novel gate-all-around (GAA) poly-Si floating-gate (FG) memory device with triangular nanowire (NW) channels was fabricated and characterized in this work. The enhanced electric field around the corners of the NW channels boosts more electrons tunneling through the tunnel oxide layer during programming and erasing (P/E) processes, and thus the operation voltage markedly decreases. Furthermore, the nonlocalized trapping feature characteristic of the FG makes the injection of electrons easier during the programming operation, which was demonstrated by technology computer-aided design (TCAD) simulations.