English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21692128      Online Users : 748
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    ASIA unversity > 資訊學院 > 會議論文 >  Item 310904400/7147


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/7147


    Title: A Multiobjective Evolutionary Solution for Short-Haul Airline Crew Pairing Problem
    Other Titles: 應用多目標演化計算於短程飛航組員之配對問題
    Authors: Tung-Kuan Liu;Chiu-Hung Chen;Jyh-Horng Chou and Chia-Hung Ku;Ta-Yuan Chou;and Chung-Nan Lee
    Contributors: Institute of Engineering Science and Technology,Natl Kaohsiung First Univ. of Science and Technology Kaohsiung;Department of Computer Science and Engineering,Natl Sun Yat-sen University
    Keywords: crew pairing;multiobjective genetic algorithms;combinational optimization飛航組員配對;多目標遺傳演算法;組合最佳化
    Date: 2007-12-20
    Issue Date: 2010-01-12 08:23:29 (UTC+0)
    Publisher: 亞洲大學資訊學院;中華電腦學會
    Abstract: The Airline Crew Pairing Problem (ACPP) which consists of finding crew itineraries and satisfying the related law and regulation constraints is a significantly economic challenge. And many efforts have been spent by airline industry in the search for efficient and effective solutions. Instead of using the traditional set partitioning model, a different view is adopted here to model the crewing problem and formulate it with a set of combinational optimization equations. In general, there are two phases in crew pairing, such as pairing generation and pairing optimization to be solved. A method of inequality-based multiobjective genetic algorithm (MMGA) is used here to provide the solution and solve them at the same time. Besides, with the Method of Inequalities (MOI), designers can configure the ranges of solutions by adjusting an auxiliary vector of performance indices. In practice, the proposed MMGA approach possesses the merits of global exploration and can provide several optimal or feasible solutions to help planners perform efficient and effective decision-making.飛航組員之配對問題包含了搜尋組員的排程路線及配合相關的法律及規範限制。此一問題牽涉到相當大的飛航經濟成本,許多航空公司一直花費許多的人力、財力,尋求經濟及有效的解決方案。有別於傳統所使用的集合-分割方式,本論文採用不同的觀點建立配對模型並將此問題轉換成組合最佳化之問題。
    一般而言,此配對問題牽涉到產生配對組合及配對最佳化兩個階段。論文中,將利用基於不等式之多目標遺傳演算法(MMGA)同步討論並求解出此兩階段問題。此外,藉由不等式之操作,設計者可以設定效率指標輔助向量以調整相關解集合的範圍。在實務上,此一方法具備了全域的搜尋能力並能產出多個最佳或可行解,對於規劃者,將可作為一實際且有效的決策工具。
    Relation: 2007NCS全國計算機會議 12-20~21
    Appears in Collections:[資訊學院] 會議論文

    Files in This Item:

    File Description SizeFormat
    2118.pdf347KbAdobe PDF216View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback