English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21710707      Online Users : 386
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/18808


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/18808


    Title: Computer Aided Classification System for Breast Ultrasound Based on BI-RADS
    Authors: 沈偉誌;Shen, Wei-Chih
    Contributors: 資訊工程學系
    Keywords: Breast cancer;Ultrasound image;BI-RADS;Computer-aided classification (CAC) system;Computer-aided diagnosis (CAD) system;Logistic regression
    Date: 2007
    Issue Date: 2012-11-26 05:58:52 (UTC+0)
    Abstract: Clinically, the ultrasound findings are evaluated by its sonographic characteristics and then assigned to assessment categories according to the definitions of Breast Imaging Reporting and Data System (BI-RADS) developed by the American College of Radiology. In this study, a computer-aided classification (CAC) system was proposed to classify the masses into assessment categories 3, 4 and 5, which simulated the clinical diagnosis of radiologists. Compared with current computer-aided diagnosis systems, the proposed CAC system classifies the indeterminate cases into BI-RADS category 4 for further diagnosis. Six hundred twenty-six cases were collected from three ultrasound systems and confirmed by pathology and retrospectively classified into categories 3, 4 and 5 by radiologists. The multinomial logistic regression model was trained as the CAC system for predicting the assessment category from the computerized BI-RADS features and from a set of machine-dependent factors. By using the machine-dependent factors to indicate the adopted ultrasound systems, the same regression model could be applied for the cases acquired from different ultrasound systems. A basic CAC system was trained by using the classification result of radiologists. A weighted CAC system, to improve the capacity of the basic CAC system in differentiating benign from malignant lesions, was trained by adding the pathologic result. Between the radiologists and the basic CAC system, a substantial agreement was indicated by Cohen's kappa statistic and the differences in either the performance indices or the A(Z) of receiver operating characteristic (ROC) analysis were not statistically significant. For the weighted CAC system, the performance indices accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 73.00% (457 of 626), 98.17% (215 of 219), 59.46% (242 of 407), 56.58% (215 of 380) and 98.37% (242 of 246), respectively; the A(Z) was 0.94; and the correlation with the radiologists was also substantial agreement. The indices accuracy and specificity of weighted CAC system, compared with those of the radiologists, were improved by 5.91% and 8.85%, respectively and the indices of sensitivity and NPV, compared with those of a conventional CAD system, were improved by 10.5% and 5.21%, respectively; all improvements were statistically significant. To classify the mass into BI-RADS assessment categories by the CAC system is feasible. Moreover, the proposed CAC system is flexible because it can be used to diagnose the cases acquired from different ultrasound systems.
    Relation: Ultrasound in Medicine and Biology; 33(11):1688-1698.
    Appears in Collections:[資訊工程學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML267View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback