ASIA unversity:Item 310904400/115596
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21720292      線上人數 : 334
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/115596


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115596


    題名: The NITRDrone Dataset to Address the Challenges for Road Extraction from Aerial Images
    作者: Kumar, Tanmay;Behera, Tanmay Kumar;Baksh, Sambit;Bakshi, Sambit;Kumar, Pankaj;Sa, Pankaj Kumar;Napp, Michele;Nappi, Michele;Cast, Aniello;Castiglione, Aniello;Vijaya, Pandi;Vijayakumar, Pandi;Bhoosha, Brij;Gupta, Brij Bhooshan
    貢獻者: 資訊電機學院資訊工程學系
    關鍵詞: AI· aerial image· Semantic segmentation· CNN· UAV
    日期: 2022-07-01
    上傳時間: 2023-03-29 02:50:30 (UTC+0)
    出版者: 亞洲大學
    摘要: Recent years have witnessed a dramatic evolution in small-scale remote sensors such as Unmanned aerial vehicles (UAVs). Characteristics such as automatic flight control, flight time, and image acquisition have fueled various computer-vision tasks, providing better efficiency and usefulness than fixed viewing surveillance cameras. However, in constrained scenarios, the number of UAV-based aerial datasets is still low, which comparatively focuses on specific tasks such as image segmentation. In this paper, we present a high-resolution UAV-based image-dataset, named “NITRDrone” focusing on aerial image segmentation tasks especially extracting the road networks from the aerial images. The images and video sequences in this dataset are captured over different locations of the NITR campus area, covering around 650 acres. Thus, it provides many diversified scenarios to be considered while analyzing aerial images. In particular, the dataset is prepared to address the existing challenges in UAV-based aerial image segmentation problems. Extensive experiments have been conducted to prove the effectiveness of the proposed dataset to address the aerial segmentation problems through the existing state-of-the-art methodologies. Out of the considered baseline methodologies, U-Net performs the best with an intersection of union (IoU) of 0.77, followed DeepLabplusException (IoU: 0.74) and SegNet (IoU: 0.68). We hope the NITRDrone dataset will encourage the researchers while boosting the research and development in the visual analysis of UAV platforms. The NITRDrone dataset is available online at: [https://github.com/drone-vision/NITRDrone-Dataset].
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML216檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋