ASIA unversity:Item 310904400/115596
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21718387      在线人数 : 429
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/115596


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115596


    题名: The NITRDrone Dataset to Address the Challenges for Road Extraction from Aerial Images
    作者: Kumar, Tanmay;Behera, Tanmay Kumar;Baksh, Sambit;Bakshi, Sambit;Kumar, Pankaj;Sa, Pankaj Kumar;Napp, Michele;Nappi, Michele;Cast, Aniello;Castiglione, Aniello;Vijaya, Pandi;Vijayakumar, Pandi;Bhoosha, Brij;Gupta, Brij Bhooshan
    贡献者: 資訊電機學院資訊工程學系
    关键词: AI· aerial image· Semantic segmentation· CNN· UAV
    日期: 2022-07-01
    上传时间: 2023-03-29 02:50:30 (UTC+0)
    出版者: 亞洲大學
    摘要: Recent years have witnessed a dramatic evolution in small-scale remote sensors such as Unmanned aerial vehicles (UAVs). Characteristics such as automatic flight control, flight time, and image acquisition have fueled various computer-vision tasks, providing better efficiency and usefulness than fixed viewing surveillance cameras. However, in constrained scenarios, the number of UAV-based aerial datasets is still low, which comparatively focuses on specific tasks such as image segmentation. In this paper, we present a high-resolution UAV-based image-dataset, named “NITRDrone” focusing on aerial image segmentation tasks especially extracting the road networks from the aerial images. The images and video sequences in this dataset are captured over different locations of the NITR campus area, covering around 650 acres. Thus, it provides many diversified scenarios to be considered while analyzing aerial images. In particular, the dataset is prepared to address the existing challenges in UAV-based aerial image segmentation problems. Extensive experiments have been conducted to prove the effectiveness of the proposed dataset to address the aerial segmentation problems through the existing state-of-the-art methodologies. Out of the considered baseline methodologies, U-Net performs the best with an intersection of union (IoU) of 0.77, followed DeepLabplusException (IoU: 0.74) and SegNet (IoU: 0.68). We hope the NITRDrone dataset will encourage the researchers while boosting the research and development in the visual analysis of UAV platforms. The NITRDrone dataset is available online at: [https://github.com/drone-vision/NITRDrone-Dataset].
    显示于类别:[資訊工程學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML212检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈