ASIA unversity:Item 310904400/115592
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21666578      線上人數 : 870
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/115592


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115592


    題名: Smart defense against distributed Denial of service attack in IoT networks using supervised learning classifiers
    作者: Bhoosha, Brij;Gupta, Brij Bhooshan;Chaudh, Pooja;Chaudhary, Pooja;Chan, Xiaojun;Chang, Xiaojun;Nedjah, Nadia;Nedjah, Nadia
    貢獻者: 資訊電機學院資訊工程學系
    關鍵詞: Internet of things (IoT) networksDistributed Denial of Service (DDoS) attackConsumer IoT (CIoT) devicesMachine learning algorithmsBotnetIoT security
    日期: 2022-02-01
    上傳時間: 2023-03-29 02:50:22 (UTC+0)
    出版者: 亞洲大學
    摘要: From smart home to industrial automation to smart power grid, IoT- based solutions penetrate into every working field. These devices expand the attack surface and turned out to be an easy target for the attacker as resource constraint nature hinders the integration of heavy security solutions. Because IoT devices are less secured and operate mostly in unattended scenario, they perfectly justify the requirements of attacker to form botnet army to trigger Denial of Service attack on massive scale. Therefore, this paper presents a Machine Learning-based attack detection approach to identify the attack traffic in Consumer IoT (CIoT). This approach operates on local IoT network-specific attributes to empower low-cost machine learning classifiers to detect attack, at the local router. The experimental outcomes unveiled that the proposed approach achieved the highest accuracy of 0.99 which confirms that it is robust and reliable in IoT networks.
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML107檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋