ASIA unversity:Item 310904400/115592
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21664945      在线人数 : 693
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/115592


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115592


    题名: Smart defense against distributed Denial of service attack in IoT networks using supervised learning classifiers
    作者: Bhoosha, Brij;Gupta, Brij Bhooshan;Chaudh, Pooja;Chaudhary, Pooja;Chan, Xiaojun;Chang, Xiaojun;Nedjah, Nadia;Nedjah, Nadia
    贡献者: 資訊電機學院資訊工程學系
    关键词: Internet of things (IoT) networksDistributed Denial of Service (DDoS) attackConsumer IoT (CIoT) devicesMachine learning algorithmsBotnetIoT security
    日期: 2022-02-01
    上传时间: 2023-03-29 02:50:22 (UTC+0)
    出版者: 亞洲大學
    摘要: From smart home to industrial automation to smart power grid, IoT- based solutions penetrate into every working field. These devices expand the attack surface and turned out to be an easy target for the attacker as resource constraint nature hinders the integration of heavy security solutions. Because IoT devices are less secured and operate mostly in unattended scenario, they perfectly justify the requirements of attacker to form botnet army to trigger Denial of Service attack on massive scale. Therefore, this paper presents a Machine Learning-based attack detection approach to identify the attack traffic in Consumer IoT (CIoT). This approach operates on local IoT network-specific attributes to empower low-cost machine learning classifiers to detect attack, at the local router. The experimental outcomes unveiled that the proposed approach achieved the highest accuracy of 0.99 which confirms that it is robust and reliable in IoT networks.
    显示于类别:[資訊工程學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML105检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈