ASIA unversity:Item 310904400/115577
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21659718      線上人數 : 452
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/115577


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115577


    題名: Pretrained Configuration of Power-Quality Grayscale-Image Dataset for Sensor Improvement in Smart-Grid Transmission
    作者: 陳永欽;CHEN, YEONG-CHIN;Syam, Mariana;Syamsudin, Mariana;Sunneng, Sunneng S. B;Berutu, Sunneng S.
    貢獻者: 資訊電機學院資訊工程學系
    關鍵詞: grayscale PQD image dataset;pretrained methods;sensor network
    日期: 2022-09-01
    上傳時間: 2023-03-29 02:49:49 (UTC+0)
    出版者: 亞洲大學
    摘要: The primary source of the various power-quality-disruption (PQD) concerns in smart grids
    is the large number of sensors, intelligent electronic devices (IEDs), remote terminal units, smart
    meters, measurement units, and computers that are linked by a large network. Because real-time data
    exchange via a network of various sensors demands a small file size without an adverse effect on
    the information quality, one measure of the power-quality monitoring in a smart grid is restricted
    by the vast volume of the data collection. In order to provide dependable and bandwidth-friendly
    data transfer, the data-processing techniques’ effectiveness was evaluated for precise power-quality
    monitoring in wireless sensor networks (WSNs) using grayscale PQD image data and employing
    pretrained PQD data with deep-learning techniques, such as ResNet50, MobileNet, and EfficientNetB0.
    The suggested layers, added between the pretrained base model and the classifier, modify the
    pretrained approaches. The result shows that advanced MobileNet is a fairly good-fitting model.
    This model outperforms the other pretraining methods, with 99.32% accuracy, the smallest file size,
    and the fastest computation time. The preprocessed data’s output is anticipated to allow for reliable
    and bandwidth-friendly data-packet transmission in WSNs
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML105檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋