ASIA unversity:Item 310904400/115577
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21658624      在线人数 : 448
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/115577


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115577


    题名: Pretrained Configuration of Power-Quality Grayscale-Image Dataset for Sensor Improvement in Smart-Grid Transmission
    作者: 陳永欽;CHEN, YEONG-CHIN;Syam, Mariana;Syamsudin, Mariana;Sunneng, Sunneng S. B;Berutu, Sunneng S.
    贡献者: 資訊電機學院資訊工程學系
    关键词: grayscale PQD image dataset;pretrained methods;sensor network
    日期: 2022-09-01
    上传时间: 2023-03-29 02:49:49 (UTC+0)
    出版者: 亞洲大學
    摘要: The primary source of the various power-quality-disruption (PQD) concerns in smart grids
    is the large number of sensors, intelligent electronic devices (IEDs), remote terminal units, smart
    meters, measurement units, and computers that are linked by a large network. Because real-time data
    exchange via a network of various sensors demands a small file size without an adverse effect on
    the information quality, one measure of the power-quality monitoring in a smart grid is restricted
    by the vast volume of the data collection. In order to provide dependable and bandwidth-friendly
    data transfer, the data-processing techniques’ effectiveness was evaluated for precise power-quality
    monitoring in wireless sensor networks (WSNs) using grayscale PQD image data and employing
    pretrained PQD data with deep-learning techniques, such as ResNet50, MobileNet, and EfficientNetB0.
    The suggested layers, added between the pretrained base model and the classifier, modify the
    pretrained approaches. The result shows that advanced MobileNet is a fairly good-fitting model.
    This model outperforms the other pretraining methods, with 99.32% accuracy, the smallest file size,
    and the fastest computation time. The preprocessed data’s output is anticipated to allow for reliable
    and bandwidth-friendly data-packet transmission in WSNs
    显示于类别:[資訊工程學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML104检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈