ASIA unversity:Item 310904400/115524
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21658164      線上人數 : 459
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/115524


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115524


    題名: AI-enabled digital forgery analysis and crucial interactions monitoring in smart communities
    作者: Sedik, Ahmed;Sedik, Ahmed;Male, Yassine;Maleh, Yassine;El, Ghada M.;Banby, Ghada M. El;Ashraf, Ashraf A.M.;Khalaf, Ashraf A.M.;Abd, Fathi E.;Fathi, E. Abd El-Samie;Bhoosha, Brij;Gupta, Brij Bhooshan;Konstantinos;Psannis, Konstantinos;Abd, Ahmed A.;Ahmed, Ahmed A. Abd El-Latif
    貢獻者: 資訊電機學院資訊工程學系
    關鍵詞: Forgery detection;Deep learning;IoT;Smart cities;Security analysis
    日期: 2022-04-01
    上傳時間: 2023-03-29 02:30:30 (UTC+0)
    出版者: 亞洲大學
    摘要: Digital forgery has become one of the attractive research fields in today’s technology. There are several types of forgery in digital media transmission, especially digital image transmission. A common type of forgery is copy-move forgery (CMF). The CMF may be encountered in streets, railway stations, underground stations, or festivals. This type of forgery may lead to hugger-mugger in some cases. Therefore, there is a need to find a sufficient countermeasure mechanism to detect image forgeries. This paper presents a new CMFD approach that depends on deep learning for IoT based smart cities. Two well-known deep learning models, namely CNN and ConvLSTM, are adopted for CMFD. The proposed models are tested on MICC-220, MICC-600 and MICC 2000 datasets for validation. Several tests are performed to verify the effectiveness of the proposed models. The simulation results reveal that the testing accuracy reaches 95%, 73%, and 94% for MICC-F220, MICC-F600 and MICC-F2000 datasets. In addition, the proposed approach achieves an accuracy of 85% for a combined set of all datasets.
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML100檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋