ASIA unversity:Item 310904400/115524
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21694674      在线人数 : 838
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/115524


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115524


    题名: AI-enabled digital forgery analysis and crucial interactions monitoring in smart communities
    作者: Sedik, Ahmed;Sedik, Ahmed;Male, Yassine;Maleh, Yassine;El, Ghada M.;Banby, Ghada M. El;Ashraf, Ashraf A.M.;Khalaf, Ashraf A.M.;Abd, Fathi E.;Fathi, E. Abd El-Samie;Bhoosha, Brij;Gupta, Brij Bhooshan;Konstantinos;Psannis, Konstantinos;Abd, Ahmed A.;Ahmed, Ahmed A. Abd El-Latif
    贡献者: 資訊電機學院資訊工程學系
    关键词: Forgery detection;Deep learning;IoT;Smart cities;Security analysis
    日期: 2022-04-01
    上传时间: 2023-03-29 02:30:30 (UTC+0)
    出版者: 亞洲大學
    摘要: Digital forgery has become one of the attractive research fields in today’s technology. There are several types of forgery in digital media transmission, especially digital image transmission. A common type of forgery is copy-move forgery (CMF). The CMF may be encountered in streets, railway stations, underground stations, or festivals. This type of forgery may lead to hugger-mugger in some cases. Therefore, there is a need to find a sufficient countermeasure mechanism to detect image forgeries. This paper presents a new CMFD approach that depends on deep learning for IoT based smart cities. Two well-known deep learning models, namely CNN and ConvLSTM, are adopted for CMFD. The proposed models are tested on MICC-220, MICC-600 and MICC 2000 datasets for validation. Several tests are performed to verify the effectiveness of the proposed models. The simulation results reveal that the testing accuracy reaches 95%, 73%, and 94% for MICC-F220, MICC-F600 and MICC-F2000 datasets. In addition, the proposed approach achieves an accuracy of 85% for a combined set of all datasets.
    显示于类别:[資訊工程學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML101检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈