ASIA unversity:Item 310904400/115106
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21710084      線上人數 : 484
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    ASIA unversity > 行政單位 > 研究發展處 > 期刊論文 >  Item 310904400/115106


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115106


    題名: Development of new computational machine learning models for longitudinal dispersion coefficient determination: case study of natural streams, United States
    作者: Tao, Hai;Tao, Hai;Salih, Sinan;Salih, Sinan;Ou, Atheer Y.;Oudah, Atheer Y.;Abba, S. I.;Abba, S. I.;Mohamm, Ameen;Ameen, Ameen Mohammed Salih;Muhamm, Salih;Awadh, Salih Muhammad;Alaw, Omer A.;Alawi, Omer A.;Mos, Reham R.;Mostafa, Reham R.;Pilla, Udayar;Surendran, Udayar Pillai;Mundhe, Zaher;Yaseen, Zaher Mundher
    貢獻者: 研究發展處學術發展組
    日期: 2022-01-01
    上傳時間: 2023-03-28 02:25:00 (UTC+0)
    出版者: 亞洲大學
    摘要: Natural streams longitudinal dispersion coefficient (Kx) is an essential indicator for pollutants transport and its determination is very important. Kx is influenced by several parameters, including river hydraulic geometry, sediment properties, and other morphological characteristics, and thus its calculation is a highly complex engineering problem. In this research, three relatively explored machine learning (ML) models, including Random Forest (RF), Gradient Boosting Decision Tree (GTB), and XGboost-Grid, were proposed for the Kx determination. The modeling scheme on building the prediction matrix was adopted from the well-established literature. Several input combinations were tested for better predictability performance for the Kx. The modeling performance was tested based on the data division for the training and testing (70–30% and 80–20%). Based on the attained modeling results, XGboost-Grid reported the best prediction results over the training and testing phase compared to RF and GTB models. The development of the newly established machine learning model revealed an excellent computed-aided technology for the Kx simulation.
    顯示於類別:[研究發展處] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML219檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋