ASIA unversity:Item 310904400/115106
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21690014      在线人数 : 436
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 行政單位 > 研究發展處 > 期刊論文 >  Item 310904400/115106


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115106


    题名: Development of new computational machine learning models for longitudinal dispersion coefficient determination: case study of natural streams, United States
    作者: Tao, Hai;Tao, Hai;Salih, Sinan;Salih, Sinan;Ou, Atheer Y.;Oudah, Atheer Y.;Abba, S. I.;Abba, S. I.;Mohamm, Ameen;Ameen, Ameen Mohammed Salih;Muhamm, Salih;Awadh, Salih Muhammad;Alaw, Omer A.;Alawi, Omer A.;Mos, Reham R.;Mostafa, Reham R.;Pilla, Udayar;Surendran, Udayar Pillai;Mundhe, Zaher;Yaseen, Zaher Mundher
    贡献者: 研究發展處學術發展組
    日期: 2022-01-01
    上传时间: 2023-03-28 02:25:00 (UTC+0)
    出版者: 亞洲大學
    摘要: Natural streams longitudinal dispersion coefficient (Kx) is an essential indicator for pollutants transport and its determination is very important. Kx is influenced by several parameters, including river hydraulic geometry, sediment properties, and other morphological characteristics, and thus its calculation is a highly complex engineering problem. In this research, three relatively explored machine learning (ML) models, including Random Forest (RF), Gradient Boosting Decision Tree (GTB), and XGboost-Grid, were proposed for the Kx determination. The modeling scheme on building the prediction matrix was adopted from the well-established literature. Several input combinations were tested for better predictability performance for the Kx. The modeling performance was tested based on the data division for the training and testing (70–30% and 80–20%). Based on the attained modeling results, XGboost-Grid reported the best prediction results over the training and testing phase compared to RF and GTB models. The development of the newly established machine learning model revealed an excellent computed-aided technology for the Kx simulation.
    显示于类别:[研究發展處] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML219检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈