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The weighted arithmetic mean and the regression methods are the most often used operators to aggre-
gate criteria in decision making problems with the assumption that there are no interactions among cri-
teria. When interactions among criteria exist, the discrete Choquet integral is proved to be an adequate
aggregation operator by further taking into accounts the interactions. In this study, we propose a com-
plexity-based method to construct fuzzy measures needed by the discrete Choquet integral and a real
data set is analyzed. The advantage of the complexity-based method is that no population probability
is to be estimated such that the error of estimating the population probability is reduced. Four methods,
including weighted arithmetic method, regression-based method, the discrete Choquet integral with the
entropy-based method, and our proposed discrete Choquet integral with the complexity-based method,
are used in this study to evaluate the students’ performance based on a Basic Competence Test. The
results show that the students’ overall performance evaluated by our proposed discrete Choquet integral
with the complexity-based method is the best among the four methods when the interactions among cri-

teria exist.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The most often used operator to aggregate criteria in decision
making problems is the classical weighted arithmetic mean (Fish-
burn, 1970). In many practical applications the decision criteria
present some interaction. However, the problem of modeling such
an interaction remains a difficult question, which is often over-
looked (Domingo & Torra, 2002). The reason is that practitioners
are lack of suitable tools to deal with the interactions such that cri-
teria are assumed to be independent and exhaustive. This comes
primarily from the absence of a precise definition of interactions
as well as the complexity and difficulty of identifying the interac-
tion phenomena among criteria. It is known that the mutual inde-
pendence among the criteria is a necessary condition for
aggregation operator to be additive. That is, if some criteria are
preferentially dependent with the others, then no additive aggre-
gation operator can model the preferences of the decision maker
(Domingo & Torra, 2002).

The weighted arithmetic mean and regression method are un-
able to overcome the undesirable phenomenon of dependence. In
contrast, the Choquet integral takes into account the interactions
among criteria. In addition, there is a key issue unsolved in the
application of fuzzy integral with the determination of density

* Corresponding author. Tel.: +886 4 2332 3456x1832; fax: +886 4 2331 6699.
E-mail address: jishieh@yahoo.com.tw (Jiunn-I Shieh).

0957-4174/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2008.06.003

values to decide the fuzzy measures in the fusion process. In this
study, entropy-based method and our proposed complexity-based
method to construct the fuzzy measures in the discrete Choquet
integral are discussed.

This paper is outlined as follows: Section 2 reviews weighting
methods, fuzzy measures, and discrete Choquet integrals with
two different constructs in fuzzy measures. A procedure of using
Choquet integral is provided in Section 3. A case study of applying
the weighted arithmetic mean method, regression method, Cho-
quet integral with the entropy-based method, and our proposed
Choquet integral with the complexity-based method is performed
in Section 4 to analyze the students’ overall performance on Basic
Competence Test when the interactions exist. Finally, conclusions
are summarized in Section 5.

2. Weighting methods, fuzzy measures, and discrete Choquet
integral

The classical weighted arithmetic mean method is the most
commonly used operator to aggregate criteria in decision making
problems without further considering the interactions among cri-
teria. The regression method is to maximize the linear relation
among the criteria without further taking into considering the
interactions among criteria. On the contrary, the discrete Choquet
integral is proved to be an adequate aggregation operator that
extends the weighted arithmetic mean method by taking into
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consideration the interactions among criteria. The philosophy of
the Choquet integral was first introduced in capacity theory (Cho-
quet, 1953) and used as a (fuzzy) integral with respect to a fuzzy
measure proposed by Hohle (1982) and then rediscovered later
by Murofushi and Sugeno (1989, 1991).

Choquet integral is defined to integrate functions with respect
to the fuzzy measures (Murofushi & Sugeno, 1989). Fuzzy integrals
are very useful for global evaluation models but the number of
parameters of fuzzy measures is large. The definitions of fuzzy
measures and Choquet integrals are as follows (Murofushi & Su-
geno, 1989):

Definition 1. Let N be a finite set of criteria. A discrete fuzzy
measure on N is a set function v: 2 - [0,1] which satisfies the
following axioms:

(i) v(¢)=0, v(N) =1 (boundary conditions);
(ii) A C B implies v(A) < v(B) (monotonicity) for A, B € 2N.

For each subset of criteria S C N, v(S) can be interpreted as the
weight of the coalition S.

Definition 2. Let v be a fuzzy measure on N={1, 2, ..., n}. The dis-
crete Choquet integral of function x: N — R with respect to v is
defined by C,(x) = "I, x4 [V(A) — V(Ais1))], where () indicates a
permutation on N such that X <Xpg <---<Xp. Also
Ay ={@),...,(m}, and Api1) = ¢. For instance, if x; < x3 <xy,
then rank x;, x,, x3 from the smallest one to the largest one.
The result is x(1)=2X1, X2)=X3, X3)=X. Finally, C,(X1,X2,X3) = X1%

v({(1),(2), D] + (x3 = x1) * [v{(2), B} + (X2 — x3) * [V({(3)})]-

The discrete Choquet integral takes into account the interaction
by means of the fuzzy measure v. If the criteria are independent,
the fuzzy measure is additive. Then, the discrete Choquet integral
coincide with the weighted arithmetic mean method. That is,
Cv(x) = >, v({i}) = x;, x € R". For example, there are five students
and three courses (D1, D, and D3). Assume the raw data and a fuzzy
measure v on each subset are in Tables 1 and 2, respectively. In
Table 2, (0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1), (0,1,1),
and (1,1,1) represent empty set, {D1}, {D>}, {D1,D>}, {D3}, {D1,Ds},
{D,,D3}, and {D{,D,,D3}, respectively. For the first student, the
raw scores are 70, 81, and 75. First, rank the scores from the small-
est to the largest, i.e., 70, 75, and 81. Then, the overall performance

Table 1
Example of the raw data used to demonstrate computation of the overall performance
by Choquet integral

Student D, D, D3
1 70 81 75
2 70 85 86
3 65 85 84
4 75 91 85
5 75 80 82
Table 2

A fuzzy measure used to demonstrate computation of the overall performance by
Choquet integral

Dy D, D5 Fuzzy measure v
0 0 0 0

1 0 0 0.1667

0 1 0 0.1667

1 1 0 0.5

0 0 1 0.1667

1 0 1 0.5

0 1 1 0.5

1 1 1 1

evaluated by Choquet integral is computed by 70 * v({D,,D,,D3}) +
(75 —70) * v({D,D3}) + (81 — 75) x v({D2})=70% 1 +5% 0.5+ 6
0.1667 = 73.5002. By the same philosophy, the overall performance
values of the second, third, fourth, and fifth students evaluated by
Choquet integral are 77.6667, 74.6667, 81.0002, and 77.8334,
respectively.

To evaluate a discrete Choquet integral, we need a fuzzy mea-
sure first. How to find a suitable fuzzy measure becomes an issue.
To be a fuzzy measure, the measure needs to satisfy the axioms of
the fuzzy measure. We note that entropy measure and complexity-
based measure are qualified to be fuzzy measures. The former one
is proposed by Kojadinovic (2004) and the latter one is proposed in
our study.

To measure the uncertainty of a random variable, the concept of
entropy was introduced (Shannon, 1948). The basic idea is that an
item with large entropy in its ratings is more important in a user’s
interest than an item with small entropy. Based on this idea, an en-
tropy-based method is in the following (Yu, Wen, Xu, & Ester,
2001): Given a discrete random variable A, let p* be the probability
of A, then define entropy of A to be h(A) = —>"p"log,p”, where
p* > 0. With the similar formula, let B be a discrete random vector
which contains at least two discrete random variables, then gener-
alize this idea to a random vector and call p? be the joint probabil-
ity and h(B) the joint entropy. By using the idea of joint entropy to
calculate the entropy of the subsets of criteria of N, define the fuzzy
measure v, as the following: v{(S) = % forall S C N (Kojadinovic,
2004). By using the idea of entropy, we need to decide the number
of level to be used to classify the raw data into the level of the score
for each criterion. For example, let the number of level to be used
be 2 and S contain only two random variables X; and X,. In addi-
tional, assume the raw data are in Table 3.

The raw data in Table 3 can be classified into Table 4 by histo-
gram equalization of “hist.m” program of Matlab 7.0 for each ran-
dom variable. To generate the complete information of fuzzy
measure vy, first to compute h(N). A joint pattern (1,2) means that
X;=1and X, = 2, and (2,2) means that X; =2 and X, = 2. There are
3 of pattern (1,2) and 2 of pattern (2,2). Thus, p>(X; =1, X, =2) =3/
5=0.6, and p5X;=2, X,=2)=2/5=0.4. Therefore, h(N)=
—0.6 x log,(0.6) — 0.4 « log,(0.4) = 0.9710. Next, h(S) is computed
when S = X; and X5, i.e., h(X;) and h(X>). In this case, there are 3 pat-
tern “1” and 2 pattern “2” in X;. From Table 4, p*1(X; = 1) =3/5 =
0.6, pX1(X; =2)=2/5=04, and h(X;) = —0.6 % log,(0.6) — 0.4
log,(0.4) = 0.9710. In contrast to Xj, there are 5 pattern “2” in
X,. From Table 4, p**(X; =1)=0/5=0, p*(X, =2)=5/5=1,

Table 3
Example of the raw data used to construct fuzzy measures based on entropy and
complexity methods

Student Xq X2
1 70 81
2 70 85
3 65 85
4 75 91
5 75 80
Table 4

The level of the score for each criterion classified from the raw data in Table 3 when
the number of level is two

Student X, X,

g WN =
NN ==
N NN NN
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and h(X;) = —1xlog,(1) = 0. By v{(S) = ,’:% forall S C N, the fuzzy
measure v; is completely defined by the following Table 5.
Although our example is to compute the fuzzy measure of a ran-
dom vector with two discrete random variables, the entropy meth-
od is also easy to compute the fuzzy measure of a random vector
with more than two discrete random variables. However, the en-
tropy-based weighting scheme might take the risk to estimate
the probability for each criterion. If the sample size is small, it often
makes a larger error to estimate the population probability. Under
such circumstances, we propose a complexity method to improve
the prediction.

The basic concept of complexity is that the more substructures
in a system, the more complex the system. This concept is in agree-
ment with our intuitive understanding that it is the connectedness
of the system elements that matters more. Thus, the more con-
nected the system, the higher the number of substructures in it.
Then, it is a good reason to count how many substructures in a
structure (Bonchev & Rouvray, 2003). The complexity C of a dis-
crete random variable X is defined to be the function which counts
the number of distinct patterns in X. The complexity C of n discrete
random variables X;,X5,...,X, is defined as the function which
counts the number of distinct patterns in joint pattern of
X1,Xs,..., X, For a finite number of random variables X1,X5,...,X,,
the complexity is finite. Thus, (X1,X>,...,X,) always can be nor-
malized to be 1. Moreover, it is very natural to defined C(¢) to be
zero, where ¢ is an empty set. By using the idea of complexity C
to calculate the complexity of the subsets of criteria of N, define
C; as the following: C;(S) = % forallS C N.Itis easy to check that
C; has property of monotonicity. That is, X C Y implies
C1(X) < C4(Y) for X, Y € 2", In addition, C;(¢) = 0. By the definition
of fuzzy measure, C; is a fuzzy measure.

Let the number of level to be 2 and S contain only two random
variables X; and X,. By using the raw data from Table 3, the raw
data can be classified by histogram equalization of “hist.m” pro-
gram of Matlab 7.0 for each random variable, as shown in Table
4. To generate the complete information of fuzzy measure v;, com-
pute C(N). From Table 4, there are two different joint patterns, i.e.,
(1,2) and (2,2). Thus, the complexity of N is 2. Next, C(S) is com-
puted when S = X; and X,. That is, compute C(X;) and C(X3). There
are two different patterns in X;. Then, C(X;) = 2. Moreover, there

are only 1 pattern in X, ie., ((X3)=1. By C;(S) :% for all

S C N, the fuzzy measure C; is completely defined by the following
Table 6. Although our example is to compute the fuzzy measure of
a random vector with two discrete random variables, the complex-
ity method is also quite easy to compute the fuzzy measure of a
random vector with more than two discrete random variables.

Table 5
A fuzzy measure constructed by the entropy method

X1 X5 Fuzzy measure v,
0 0 0/0.9710=0

1 0 0.9710/0.9170=1
0 1 0/0.9710=0

1 1 0.9710/0.9710=1
Table 6

A fuzzy measure constructed by the complexity method

Xq X5 Fuzzy measure C;
0 0 0/1=0

1 0 2/2=1

0 1 1/2=0.5

1 1 2/2=1

In this study, four methods, including classical weighted arith-
metic mean method, regression-based method, the Choquet inte-
gral with the entropy method and our proposed Choquet integral
with the complexity-based method, are applied in a case study of
a Basic Competence Test to evaluate the students’ performance.

3. A procedure of using the discrete Choquet integral

A five-step procedure of applying the Choquet integral based on
Calvo, Kolesarova, Komornikova, and Mesiar (2001) is as follows:

Step 1. Decide the range of level to be used to classify the raw
data into the level of the score for each criterion in our study
by Scott’s rule and Sturge’s formula. Assume that m is the num-
ber of the level of scoresand m = 2, 3,4, 5, 6, 7, 8,9 are the range
in our study. Then, transform the scores of the raw data into the
level of the scores for each item when m=2, 3,4,5,6,7,8,9.
Step 2: Check the mutual interaction and the strength of inter-
action among criteria. First, calculate the Chi-square divergence
between a pair of criteria, and use statistical test to determine if
there is any mutual interaction among the criteria for each
m=2,3,4,5,6, 7, 8,9. For the analysis of correlation, we chose
Cramer’s coefficients to determine if there is strong mutual
interaction among criteria. Compute Cramer’s coefficients for
eachm=2,3,4,5,6,7,8,9. Note that if there is no interaction
among criteria, we expect that the accuracy of the Choquet inte-
gral method is as well as that of weighted arithmetic mean
method.

Step 3. For each m make the following calculations: (1) use
credit hours to get the weight for each course; (2) use regres-
sion method to get the weight for each course; (3) by using
the results from Step 2, compute fuzzy measures based on
entropy and joint entropy for each subset of all courses. Then,
the importance for each subset is resolved; (4) use the results
from Step 2, compute fuzzy measures based on the complexity
for each subset of all courses. Thus, the importance for each
subset is available.

Step 4: Calculate the weighted arithmetic mean and regression
methods among all courses from the raw data. Later, transform
the results into the level of the scores for each course when
m=2, 3,4,5,6, 7, 8 9. Use the Choquet integral with the
entropy method and the complexity-based method to compute
overall performance values discussed in Step 3 for each m = 2, 3,
4,5, 6,7,8,9. Finally, transform the results into the level of the
scores for eachm=2,3,4,5,6,7,8,9.

Step 5: Calculate the accuracy for each method for eachm =2, 3,
4,5,6,7,8,09.

4. A case study

A data set comes from a class with 45 students in a junior high
school, and each student took three courses (namely physics and
chemistry, biology, and geoscience) for natural science. The credit
hours for these three courses are 16, 4, and 4, respectively. The
maximum score for each course is 100 points. Later, all students
took a Basic Competence Test for all junior high school students.
The maximum and minimum scores of the Basic Competence Test
are 60 and 1, respectively. To simplify the notations, physics and
chemistry, biology, and geoscience are denoted by C;, C;, C3, while
the score of the Basic Competence Test is denoted by Obj. The de-
tailed information is depicted in Table 7.

The first step is to use two rules to help decide the range of the
number of level. One is Scott rule with the formula of m = %,
where R is full range, m is the number of the level, ¢ is the standard
deviation of the distribution, and n is the available sample of size
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Table 7
The detailed information in the case study

Student G G, C3 Obj Student G Cy C3 Obj

1 70 81 75 41 26 78 80 76 37
2 70 85 86 42 27 88 84 80 35
3 65 85 84 33 28 55 65 60 5
4 75 91 85 25 29 78 85 75 27
5 75 80 82 27 30 72 84 78 47
6 68 75 76 33 31 64 76 70 27
7 70 77 72 35 32 60 70 65 20
8 80 78 70 31 33 69 80 70 35
9 83 81 85 50 34 66 78 66 17
10 75 79 83 31 35 62 70 66 13
11 62 74 68 35 36 61 72 65 28
12 68 74 80 30 37 68 74 71 11
13 77 85 81 37 38 53 65 59 9
14 66 76 74 29 39 67 70 64 36
15 78 88 83 31 40 59 65 68 16
16 57 67 62 15 41 74 82 75 49
17 56 70 63 12 42 58 66 62 15
18 68 80 74 31 43 76 74 78 38
19 53 66 58 21 44 84 81 78 37
20 65 81 73 32 45 76 72 74 35
21 62 76 69 12
22 67 75 71 22
23 74 71 68 28
24 61 69 65 28
25 64 70 67 24
Table 8
The results of Cramer’s correlation coefficients
Ci G G Ci G G
m=2 m=3
(& 1 0.5307 0.5737 1 0.5437 0.5284
G 0.5307 1 0.7441 0.5437 1 0.6765
Cs 0.5737 0.7441 1 0.5284 0.6765 1
p<0.01 p<0.01
m=4 m=5
(& 1 0.5097 0.5744 1 0.5131 0.5885
G 0.5097 1 0.6026 0.5131 1 0.5583
Cs 0.5744 0.6026 1 0.5885 0.5583 1
p<0.01 p<0.01
m=6 m=7
G 1 0.4848 0.5537 1 0.4991 0.537
G 0.4848 1 0.6212 0.4991 1 0.5821
G 0.5537 0.6212 1 0.537 0.5821 1
p<0.01 p<0.01
m=8 m=9
G 1 0.515 0.5329 1 0.5164 0.5375
G 0.515 1 0.5336 0.5164 1 0.5049"
G 0.5329 0.5336 1 0.5375 0.5049" 1
p<0.01
" p>0.01.

(Scott, 1979). In practice, ¢ is replaced by the estimated standard
deviation, s. In our study, the sample of size n is 45. From the
raw data, R=35, 26, 28, and 45 for each item and s=38.4887,
6.7182, 7.6480, and 10.7691, respectively. By the above formula,
m would be 4.2021, 3.9443, 3.7313, and 4.2587, respectively. Thus,
m=4orb5are poss*ible candidates. The other one is the Sturge’s for-
mula: m=1+3.3 logqo(n) (Scott, 1992). From the latter formula,

Table 9
Weights for each course by the weighted arithmetic mean and regression methods

m is 6.4556. Thus, m = 6 or 7 are possible candidates. In this study,
setm=2,3,4,5,6, 7, 8,9 for extending m values around the pos-
sible candidates by two levels. That is, m=2, 3, 4, 5, 6, 7, 8, 9.

The second step is to check whether there exist mutual interac-
tions at significant level of 0.01 among courses and observe the
strength of mutual interactions among courses. First, use the
results in Step 1 and “crosstab.m” program of Matlab 7.0 to com-
pute the corresponding p-values and Chi-square divergence be-
tween a pair of criteria for each m=2, 3, 4, 5, 6, 7, 8, 9. Later,
compute Cramer’s correlation coefficient by using Chi-square
values by the following formula: G = ,{—ZL where n=45 and
L=m—1 for each m=2, 3, 4, 5, 6, 7, 8, 9. From p-values under
m=2,3,4,5,6, 7, 8,9, summarized in Table 8, clearly there exist
mutual interactions at significant level of 0.01 among courses when
m=2,3,4,5,6,7, 8 except m=9. From Cramer’s correlation coeffi-
cient in Table 8, we know the strength of mutual interactions
among courses is stronger. Thus, we expect the accuracy of the
Choquet integral method is better than those of weighted arithme-
tic mean and regression methods when m=2, 3,4, 5,6, 7, 8.

The third step is to calculate the importance for each course by
weighted arithmetic mean and regression methods, and the results
are summarized in Table 9. From Table 9, C; (physics and chemis-
try) has the highest importance than C, (biology) and C; (geosci-
ence) by the weighted arithmetic mean method, i.e., C; > C; = Gs.
In contrast to the weighted arithmetic mean method, the regres-
sion method shows different importance as follows: C; > C3 > Cs.
That is, it suggests that the class needs to put more efforts on geo-
science to improve the score on the Basic Competence Test. For the
evaluation of the Choquet integral with the entropy-based and the
complexity-based methods, calculate the importance for each sub-
set generated by all courses form =2, 3, 4, 5, 6, 7, 8, 9. The numer-
ical figures of fuzzy measures for each subset are computed by
Matlab and provided in Table 10. From Table 10, the importance
of complexity-based method is larger than that of entropy-based
method for each subset of all criteria. This means that the impor-
tance of entropy-based method is underestimated. The reasons
may come from the error of estimating a population probability
by a small sample of size 45.

The fourth step is to compute the overall performance of stu-
dents by the four methods. For each student, the overall perfor-
mance and the score of the Basic Competence Test are
transformed into the level of the scores for each item, as shown
in Table 11, where M1, M2, M3, and M4 represent the weighted
arithmetic mean method, the regression method, the Choquet inte-
gral with the entropy-based method, and the Choquet integral with
the complexity-based method, respectively. The different numeri-
cal figures in the Choquet integral column depicted in Table 11
have different meanings. The higher the value of Choquet integral
is, the better it is. Finally, the fifth step is to compare the predic-
tions of different methods under different m, depicted in Table 12,
where higher value means better accuracy. Obviously, the Choquet
integral with the complexity-based method has the best accuracy
among the four methods. The reasons may be that to estimate a
population by the sample probability is worsen when m is greater
than 4. It is worth to note that the regression method has better
accuracy than the weighted arithmetic mean method since the
regression method is to minimize the error without the assump-
tion of mutual interaction among courses.

Weighted arithmetic mean method

G G (&

Regression method

G G G

16/24 424 424

45.8959

0.5062 0.1650 0.3732
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Table 10 Table 10 (continued)
Entropy-based and complexity-based fuzzy measures with m=2, 3,4,5,6, 7, 8,9 X
Entropy-based Complexity-based
Entropy-based Complexity-based
G G (& Fuzzy measure C G Cs Fuzzy measure
G G C3 Fuzzy measure G G Cs Fuzzy measure
1 1 0.8 0 1 1 0.8056
m=2 1 1 1 1 1 1 1 1
0 0 0 o0 0 0 0 O
1 0 0 01667 1 0 0 02857
0 1 0 01667 0 1 0 02857
1 1 0 0.5 1 1 0 0.5714 Table 11
0 0 1 0.1667 0 0 1 0.2857 The results of overall performance evaluated by four methods and the scores of the
1 0 105 10 1 05714 Basic Competence Test are transformed into the level of the scores with m =2, 3, 4, 5,
0 1 1 05 0 1 1 05714 6,7.8,9
1 1 1 1 1 1 1 1
5 Student M1 M2 M3 M4 Obj Student M1 M2 M3 M4 Obj
i =
0 0 0 o0 0O 0 0 o0 m=2
1 0 0 01667 1 0 0 02308 1 2 2 2 2 2 26 2 2 2 2 2
0 1 0 0.1667 0 1 0 02308 2 2 2 2 2 2 2 2 2 2 2 2
1 1 0 05 1 1 0 05385 3 2 2 28282 28 1 1 1 1
0 0 1 01667 0 0 1 02308 4 1 2 2 2 1 29 r 2 2 2 1
1 0 1 05 1 0 1 05385 3 ! 2 2 2z 1 3 2 2 2 2 2z
0 1 105 0 1 1 05385 5 2 22 2 2h 31 11 1 11
1 1 11 1 01 1 1 7 2 2 2 2 2 32 1 1 1 1 1
8 2 2 2 2 2 33 2 2 2 2 2
m=4 9 2 2 2 2 2 34 1 1 1 1 1
0 0 0 0 0 0 0 O 10 2 2 2 2 2 35 1 1 1 1 1
1 0 0 01579 1 0 0 02 1 2 1 1 1 2 36 2 1 1 1 2
0 1 0 01579 0 1 0 02 12 > 2 2 2 2 37 1 1 1 1 1
1 1 0 0.579 1 1 0 0.6 13 2 2 2 2 2 38 1 1 1 1 1
0 0 1 01579 o 0 1 02 14 2 1 2 2 2 39 2 1 1 1 2
1 0 1 0579 1 0 1 06 15 2 2 2 2 2 40 1 1 1 1 1
0 1 1 05263 0 1 1 055 16 1 1 1 1 1 41 5 2 2 2 2
1 1 T 1 1 1 1 17 1 1 1 1 1 42 1 1 1 1 1
=55 18 2 2 2 2 2 43 2 2 2 2 2
0 0 0 0 0 0 0 0 19 1 1 1 1 1 44 2 2 2 2 2
1 0 0 0.1667 1 0 0 02 20 2 1 2 2 2 45 2 2 2 2 2
0 1 0 01667 0 1 0 02 21 1 1 1 1 1
1 1 0 05 1 1 0 052 22 1 1 1 1 1
0 0 1 0.1667 0 0 1 02 23 2 2 1 1 2
1 0 1 05417 1 0 1 056 24 2 1 1 1 2
0 1 1 0.5 0 1 1 0.52 25 1 1 1 1 1
1 1 1 1 1 1 1 1 m=3
= 1 2 2 2 2 3 26 3 3 3 3 3
0 0 0 0 0 0 0 0 2 2 3 3 3 3 27 3 3 3 3 2
1 0 0 01786 1 0 0 02069 3 2 2 3 3 2 28 1 1 1 1 1
0 1 0 01786 0 1 0  0.2069 4 3 3 3 3 2 29 3 3 3 3 2
1 1 0 06786 1 1 0 06897 3 3 3 3 3 2 30 2 3 3 3 3
0 0 1 0.1786 0 0 1 0.2069 6 2 2 2 2 2 31 2 2 2 2 2
1 0 1 0.6429 1 0 1 0.6552 7 2 2 2 2 2 32 1 1 1 1 1
0 1 1 0.6072 0 1 1 06207 8 3 3 3 3 2 33 2 2 2 2 2
1 1 1 1 1 1 1 1 9 3 3 3 3 3 34 2 2 2 2 1
~ 10 3 3 3 3 2 35 1 1 1 1 1
=1 11 1 1 2 2 2 36 1 1 1 1 2
g o v e v @0 0 @ 12 2 2 2 2 2 37 2 2 2 2 1
1 0 0 01936 1 0 0 02188 13 3 3 3 3 3 133 . 1 7 7 3
0 1 0 01936 0 1 0 02188 14 5 5 2 2 2 39 5 2 1 2 3
1 1 0 07097 1 1 0 07188 5 3 5 3 9 9 = = - = "
0 0 1 0.1936 0 0 1 02188 16 . 1 ] " : 7 > 3 3 3 3
1 0 1 0.7097 1 0 1 07188 17 1 1 1 1 1 2 1 1 1 1 3
0 1 1 06774 0 1 1 06875 By 5 2 5 9 3 9 5 2 g o
g i L o1 19 1 1 1 1 2 44 3 3 3 3 3
m=8 20 2 2 2 2 2 45 2 2 2 2 2
0 0 0 0 0 0 0 O 21 1 2 2 2 1
1 0 0 01945 1 0 0 02162 22 2 2 2 2 2
0 1 0 01945 0 1 0 02162 23 2 2 2 2 2
1 1 0 06667 1 1 0 06757 24 1 1 1 1 2
0 0 1 0.1945 0 0 1 02162 25 1 1 1 2 2
1 0 1 0.6667 1 0 1 06757 i
0 1 1 07222 0 1 1 07297 2 3 3 3 8 4 % 35 4 3 4 3
i L L. L 2 3 4 4 4 4 27 4 4 4 4 3
m=9 3 3 3 4 3 3 28 1 1 1 1 1
0 0 0 0 0 0 0 O 4 4 4 4 4 2 29 4 4 4 4 2
1 0 0 02286 1 0 0 025 5 3 4 4 4 2 30 3 3 4 3 4
0 1 0 02286 0 1 0 025 6 2 3 3 3 3 31 2 2 2 2 2
1 1 0 07143 1 1 0 07222 7 3 3 3 3 3 32 1 1 1 1 2
0 0 1 02286 0 0 1 025 8 3 3 3 3 3 33 3 3 3 3 3
1 0 1 0.8286 1 0 1 08333
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Table 11 (continued)

Table 11 (continued)

M1 M2 M3 M4 Obj

Student
29

M4  Obj

M1 M2 M3

M2 M3 M4 Obj  spudent

M1

Student
34
35

M2 M3 M4 Obj

M1

Student

30
31

10
11

36
37
38

32
33
34
35
36
37
38

12
13
14
15
16
17
18
19
20
21

39
40

10
11

41

12
13
14
15
16
17
18
19
20
21

42

43

39

44
45

40

41

42

22
23

43

44
45

24
25

22
23

26

24
25

29
30
31

26
27
28
29

32
33

34
35

30
31

10
11

36
37
38

32
33

12
13
14
15
16
17
18
19
20
21

34
35
36
37
38

39
40

10
11

41

12
13
14
15
16
17
18
19
20

42

43

39
40

44
45

41

42

22
23

43

44
45

24
25

21
22
23

25

29
30
31

26
27
28
29

32
33

34
35

30
31

10
11

36
37
38

32
33

12
13
14
15
16
17
18
19
20
21

34
35
36
37

39
40

10
11

41

12
13
14
15
16
17
18
19
20
21

42

38

43

39
40

44
45

41

42

22
23

43

44
45

24
25

22
23

24
25
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Table 12
The accuracy for each method with m=2, 3,4,5,6,7,8,9

m  Weighted Regression Choquet integral Choquet integral
arithmetic based on entropy based on complexity
mean

2 0.7333 0.8 0.8222 0.8222

3 05778 0.6222 0.6 0.6444

4 04444 0.4889 0.5333 0.5333

5 03111 0.4 0.3333 0.4

6 03778 0.4667 0.3778 0.4667

7 0.2444 0.2667 0.2667 0.2889

8 0.2444 0.3556 0.2889 0.3556

9 0.2889 03111 0.2 0.3333

5. Conclusions

A case study of applying weighted arithmetic mean method,
regression method, the Choquet integral with the entropy-based
method, and the proposed Choquet integral with the complexity-
based method is presented in this study to evaluate the overall
performance of students in a junior high school based on a Basic
Competence Test. The weighted arithmetic mean and regression
methods assume there is no any interaction between courses,
whereas the Choquet integral methods can be used to deal with
interactions among courses. The advantage of the proposed Cho-
quet integral with the complexity-based method is that no popula-
tion probability is to be estimated such that the error of estimating
the population probability is reduced. Typically, in order to accu-
rately estimate the population probabilities, the sample of size
should be large enough.

In our study, the statistical tests show that there exists interac-
tion between any two courses which result in the best perfor-
mance of our proposed method consistently for different m
values. The poor performance of the Choquet integral with the

entropy-based method might result from the smaller sample of
size. Note that our sample of size is 45. Thus, the error of estimat-
ing a population probability based on a small sample of size might
be larger. Finally, the proposed Choquet integral with the complex-
ity-based method is suitable to deal with particularly small sample
of sizes.
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Theory of Multivalent Delta-Fuzzy Measures
and 1ts Application

Hsiang-Chuan Liu, Der-Bang Wu, Yu-Du Jheng, and Tian-Wei Sheu

Abstract—The well known fuzzy measures, Lambda-measure and
P-measure, have only one formulaic solution, the former is not a
closed form, and the latter is not sensitive enough. In this paper, a
novel fuzzy measure, called Delta-measure, is proposed. This new
measure proves to be a multivalent fuzzy measure which provides
infinitely many solutions to closed form, and it can be considered as an
extension of the above two measures. In other words, the above two
fuzzy measures can be treated as the special cases of Delta-measure.
For evaluating the Choquet integral regression models with our
proposed fuzzy measure and other different ones, a real data
experiment by using a 5-fold cross-validation mean square error
(MSE) is conducted. The performances of Choquet integral regression
models with fuzzy measure based on Delta-measure, Lambda-measure
and P-measure, respectively, a ridge regression model and a multiple
linear regression model are compared. Experimental result shows that
the Choquet integral regression models with respect to Delta-measure
based on Gamma-support outperforms other forecasting models.

Keywords—Lambda-measure, P-measure, Delta-measure,

Gamma-support, Choquet integral regression model.

I. INTRODUCTION

HEN there are interactions among independent
variables, traditional multiple linear regression models

do not perform well enough. The traditional improved methods
exploited ridge regression models [1]. In this paper, we suggest
using the Choquet integral regression models [5,6,7,8,9,10]
based on some single or compounded fuzzy measures [2,3,4,
12,13] to improve this situation. The well-known fuzzy
measures, A-measure [2,3] and P-measure [4], have only one
formulaic solution of fuzzy measure, the former is not a closed
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form, and the latter is not sensitive enough. In this paper, we
proposed a new fuzzy measure, d-measure, which offers
infinitely many solutions to a fuzzy measure with closed form
and without changing the given singleton measure, and thereby,
we can obtain an improved Choquet integral regression model
with respect to this new fuzzy measure.

This paper is organized as follows: The multiple linear
regression and ridge regression [1] are introduced in section II;
two well known fuzzy measure, A-measure [2] and P-measure
[4], are introduced in section III; our new measure, d-measure,
is introduced in section IV; the fuzzy support, y-support [7] is
described in section V; the Choquet integral regression model
[6],[7],[8] based on fuzzy measures are described in section VI;
experiment and result are described in section VII; and final
section is for conclusions and future works.

II. THE MULTIPLE LINEAR REGRESSION, RIDGE REGRESSION
Let Y=Xf+¢, &~ N(Q,azln) be a multiple linear
model, é =(XXx )71 X'Y be the estimated regression

coefficient vector, and f, = (XX +4l, )" XY be the

estimated ridge regression coefficient vector, Kenard and
Baldwin [1] suggested

A2
no

»)
1]

)

>

Iy

III. Fuzzy MEASURES

The two well known fuzzy measures, the A-measure
proposed by Sugeno in 1974, and P-measure proposed by
Zadah in 1978, are concise introduced as follows.

A. Axioms of Fuzzy Measures [2, 3, 4]
A fuzzy measure g on a finite set X is a set function

w1:2% —[0,1] satisfying the following axioms:

1) ,u(¢) =0, ,u(X) =1 (boundary conditions)
2y AcB= u(A) < u(B) (monotonicity)

2
)
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B. Singleton Measures [2, 6, 7]
A singleton measure of a fuzzy measure g on a finite set X is

a function s: X —[0,1] satisfying:

s(x)=#({x}), xe x @
s(x) is called the fuzzy density of singleton x .

For given singleton measures s, a A-measure, g, , is a fuzzy
measure on a finite set X, satisfying:

ABe2X ANB=¢,AUB= X
:>g/1(AUB)
=g, (4)+g,(B)+4g,(4)g;(B)

H[1+/1s(xl.)]=l+l>0,S(xl.)=gﬂ({xl.}) (6)

i=1
Note that once the singleton measure is known, we can
obtain the values of A uniquely by using the previous
polynomial equation. In other words, A-measure has a unique
solution without closed form. Moreover, for given singleton

measures s, If z s(x)=1then g, (A) = ZS(x) , in other

xeX xeA

)

word, if Z s(x) =1 then A-measure is just the additive

xeX
measure

C. P-measure [4]
For given singleton measures s, a P-measure, g, , is a fuzzy

measure on a finite set X, satisfying:
"4e2”

:gP(A)zmax{s(x)}=max{gp({x})} (7)

xed xeAd
Note that for any subset of X, A, P-measure considers only
the maximum value and will lead to insensitivity.

IV. A NEW METHOD - DELTA-MEASURES

A. Definition of 6-measure
For given singleton measure s, a §-measure, g, is a fuzzy

measure on a finite set X, |X | = n, satisfying:

1)de [—1,1], Zs(x) =1

xeX

2) g5(¢)=0.g5(X)=1
) VAc X, A X =

ISSN: 1790-0832

1062

Hsiang-Chuan Liu, Der-Bang Wu, Yu-Du Jheng, Tian-Wei Sheu

(1+68))s(x)

_ xed _
gs(4)= [1 + 5rilglxs(x)}—l N 5ZS(X) 5n3€eljcs(x)
xed
®)

B. Important Properties of 6-measure

To prove that d-measure is a fuzzy measure, we need to
prove the following theorem 1 firstly.

Theorem 1
For given singleton measure s,

If Ac Bc X then

2, 5(x) = 25 (x) > maxs (x)} —max{s (x)} >0

)

[Proof]
Let B=AUC=AU{xl,xz,...,xn},C={xl,x2,...,xn}

If max{s(x)} = max{s(x)} , then

xeB xeA
;s(x) — ;s(x) >0= r{(l:l;({s(x)} — rilgj({s(x)} ,
its true,

now suppose that r?ggx{s(x)} > I?f}{s(x)}

(I) Ifn=1, let B:AUC:AU{xl},then

@
;S(X) = ;S(x)+ ;S(x) =;S(x)+ s(xl)
= s(xl) = ;s(x) —;S(x) 20
(ii) Since
Tg;x{s(x)} = max{rzlfj;{s(x)},s(xl )} > IES}{S(X)}

= s(x1 ) = max{s(x)} 2 max{s(x)} - max{s(x)}

xeB xeB xed

(iii) from (i) and (ii), we can obtain

z s(x)— Zs(x) 2 max{s(x)}— max {S(X)}

eB i xXeB xed
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(i) if 6 =—1 itis trivial

(D If n=k , let B=AUC=AU{x,x,,....%; } (i) if 6>—1
satisfying 0SZS()C)S1: 1+5Z s(x)>0
;s(x)—és(x)Zrilg?x{s(x)}—n;&x{s(x)} 10 o o ved ved
To prove that if n=k+1 s { } _
gs(4) 1+ s(x)|=
B'=AUC = AU{x,%y,..,%, %} = BU{x,,4 | s (4) ;A ()
Satisfying
Zs(x)—Zs(x)Zmagg{s(x)}—man{s(x)} (11) [1 +0 max {S (x)}} {(1 + o )ZA s (x)}
xeB’ xed e e xe€

xe A4

SinceB'=BU{xk+1},and S(xkﬂ)ﬁr){leag,({s(x)} [5 max {s( )}}{1+5Z ( )}

(i) if I?S?{S(x)} Zﬁ%’,({s(x)}’then and o

> 5(x) = X s(x) = s(xp0) + 2o () = Do () 551,

xeB' xed xeB xeAd

2 () # max s (x)] — max s (x)} +68Y s(x)|2[1+8max{s(x)} |>0,
=s(xk+1)+max{s(x)} max{ (x )} [1 52 ( )} [1 o xeA{ ( )}} 0

{S )}‘EA O<max{s(x)}§Z:S(x)Sl
x)

xeAd

> max{ } max
xeB’ xeA

jxeza; Z:T ga(A)|:1+5ZS(x)}

Zmag;{s(x)}—max{s(x)} xed

(iiY)EIB\Iow supposget;at max{s(x)} < max{s(x)} , - (1 + 5)2 )+ g max { (x)} Z ( )

xed e

Hence

xeb o oy ey
then s(x,.,) =max {s(x)}, and — & max {5 (x)}
ZB: s(x )_; s(x) if —1<8<0,then
= (%) Z; ;S [1+5; }: (1+9) Z‘; s(x) (12)
2 5(x,) = max {3 (+) +<—5>n;g;{s<x>}_1—zs(x>}zo
> max {5 (x)} —max {s (x)} if 8> 0, then -
:;S(x)_;s(x) g, (A){1+§§A (x
(II) By mathenitri%:i{ljf;)o}n, fE%X(E: af:;)(}n), the proof is (1 *o v {S (x )})XZE:A s(x)+
completed.
5% s () max ()} = 0

Theorem 2 Therefore

For given singleton measure s, "0 € [—1,1] , d-measure is a g (A)[l + 523();)} >0 ,and g, (A) >0

fuzzy measure. xed

[Proof]; (13)

(I) To prove the boundary conditions; 0 < g (A) <1
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(iii)
[1 + 51?:1;( {s (x)}}(l + 5)2 s(x)—

xed

é‘nxleajc{s(x)}{l +0)] s(x)} —{1 +0)] s(x)}

xed xed

B [IMI‘E:‘AX{S(")}HZS(X)—I} <0

xed

= [1 +5r2€aj({s(x)}}(l+ 5)Y s (x)-

xed

5IESAX{S(x)}{1+ 5zs(x)}

xed

S{l-&-éZs(x)}

xed

(1+5)Zs(x)

{1 + xg:(x)}

Therefore 0 < gg(A) <LVAcCX

— 5 max {s(x)} <1

xed

= [l + & max {s(x)}

xed

(IT) To prove the monotonicity;

AchX:>g5(A)Sg5(B)

(i) Let gP(A)er&x{s(x)},ga (A)zZ;s(x)
Ac Bc X
= gp(4)<gp(B) g, (4)<g,(B)
g (B)=gp(4)+c<g,(B)=g,(4)+d

Let

From theorem 1 we know that 0 < ¢ <d <1, then

:[1+§gP(A)}%

(1+6)g,(B)
[1+6g,(B)]

[yt

—oc

[+ o8, (4) (19
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= D'=[1+5g,(B)]D
=[1+6g,(4)](1+6)g, (B)+5c(1+5)g, (B)
—5c[l+5ga (B)}

~[1+0g, (B):||:(1+5gP(A))%:|
=[1+6[e, (0)]](1+06)[d]
(14 fe, ()]][sele. (8)-1]]

(15)

if§e[—l,0]then [1+§[gP(A)HZO,
(1+6)=0,
[1+0[e, (4)]]=0.
[5ce, (B)-1]]>0,
where [ga (B)]e[O,l],
d>0 then D' >0,

and gJ(A)S gs (B)
if0<6 <1,sinced >2c>0

= [1+6[g, (4)]](1+6)[d]
+[1+6[g, (4)]][oc[e, (B)-1]]
>[1+6[g, (4)]](1+8)[e]
+|:1+5[gg (A)H[é‘c[ga (B)—lﬂ >0

where (1+6)> [l + é’[g[r (A)H >0,and

[1+6[gp(4)]]2[o[1-g,(B)]]20
then Ac B= g;(A4)<g,(B)
Theorem 3
(1) 6-measure is increasing function on 6
(i) if 0 = —1 then 5-measure is just the P-measure
(iii) if & =0 then 5-measure is just the additive measure
(iv) if =1 < 6 <0 then 3-measure is a sub-additive
measure
(v)if 0 < O <1 then §-measure is a supper-additive
measure
[Proof];
(i) d-measure is increasing function ond
Let —-1< ¢, <3, <1 to prove that for each

AcX=g; (A)Sgﬁz(A)
Let f(5)=gs(A4)

~[1+5g, (A)]—(1+5)g" (4)

-0 A) (16
1+5g, (4) gr(4) (1)
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Since l—gg(A)Z 0, gU(A)Z gP(A)

Then
s Umg (][ (4)-gr(4)]
7(9)= [1+5g,(4)] =00
£1(8)= —2ga(A)[l—ga(A)][gagA)—gp(A)] -0
[1+6g,(4)]
(18)

Therefore ¢ -measure is a concaved downward and increasing
functionon & .
(i) and (iii) are trivial
(iv) If —1< 6 <0, since O -measure is increasing function
on &
then v4 - x = gs (A)S g (A): z s(x),in
xed
other word , 0 -measure is sub-additive
(V) If 0 <0 <1, since & -measure is increasing function on
1)
then va ¢ x = g, (4)> g, (4)= 3 5 (x)in
xed

other word , & -measure is supper-additive.

Theorem 4
If Zs(x)zl and 0=0 then O -measure is just the

xeX
A -measure

Theorem 5
P -measure, additive measure and A -measure are the special
cases of O -measure

V. TI'-SUPPORT [7]

For given singleton measure s of a fuzzy measure 1 on a finite

set X, if Z s(x) =1, then s is called a fuzzy support measure
xeX

of u, or a fuzzy support of p, or a support of p. Two kinds of
fuzzy supports are introduced as below.

Let p be a fuzzy measure on a finite set X = {xl,x2 ,...,xn} R
»; be global response of subject i and f; (x J.) be the

evaluation of subject i for singleton x;, satisfying:

0<f(x;)<Li=12,..N, j=12,..n
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}/(xj)— . ,j=12..n  (19)
kz_;[l+r(f(xk)ﬂ
where r(f(x )): ;;y;;/ (20)
S2 _i N _ii 2 (21)
gl Tve”
, 1L | ’
43 i) 2als)| e

Il
—_
~
[\}
NN
~

satisfying OS}/(xj)Sl and Zn:y(xj)
J=1

then the function 7 : X — [0,1] satisfying ,u({x}) = }/(x) ,
Vx e X is a fuzzy support of p, called y-support of .

VI. CHOQUET INTEGRAL REGRESSION MODELS

A. Choquet Integral [3, 5, 9, 10]

Let p be a fuzzy measure on a finite set X. The Choquet
integral of f; : X — R, with respect to p for individual i is

denoted by

n

J cffd“:;[ff (35) 7 (xofl))}”(%)) =12 N
(25)
where f, (x(o)) =0, f; (x(j)) indicates that the indices have

1

been permuted so that
0 fi(x)) < £ (%)) €< (3 26)

27

B. Choquet Integral Regression Models [6 - 12]
Let y,¥,,....yy be global evaluations of N objects and

i (xj),fz(xj),...,fN (xj), j=12,...,n, be their
evaluations of x;, where JitX—>R, ,i=12,.,N.

Let p be a fuzzy measure, o, f € R,

%=a+ﬂjcﬁdgﬂ+q , e,.~N(0,o‘2) ,i1=1L2...N (28)
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(d,ﬂ) argmm[i(y -a- ﬂjcfdgﬂ)} (29)

then J, =d+/}jﬁdgﬂ, i=1,2,.., N iscalled the

Choquet integral regression equation of p, where

B=S,1S,;
N

—ﬁ%izj_v;fﬁdg,,
{ —Z}JUf@ — Iﬁ@ }

(30)

€2))

Mz

S}'f. = [ N-1
(32)
N L& 2
Z“ﬁdgw _szf"dgﬂ*:l
g =) (33)
n N-1

VII. EXPERIMENT AND RESULT

A. Education Data

The total scores of 60 students from a junior high school in
Taiwan are used for this research. The examinations of four
courses, physics and chemistry, biology, geoscience and
mathematics, are used as independent variables, the score of the
Basic Competence Test of junior high school is used as a
dependent variable.

The data of all variables listed in Table III is applied to
evaluate the performances of four Choquet integral regression
models with P-measure, A-measure and d-measure based on
y-support respectively, a ridge regression model, and a multiple
linear regression model by using 5-fold cross validation method
to compute the mean square error (MSE) of the dependent
variable. The formula of MSE is

1< .
MSE==—> (y,-3) (34)
N3
The singleton measures, y-support of the P-measure,
A-measure and d-measure are listed as follows which can be

obtained by using the formula (19).
{0.2488, 0.2525, 0.2439, 0.2547}

For any fuzzy measure, p-measures, once the fuzzy support
of the p-measure is given, all event measures of | can be found,
and then, the Choquet integral based on p and the Choquet
integral regression equation based on p can also be found by
using above corresponding formulae.

The experimental results of five forecasting models are
listed in Table I. We find that the Choquet integral regression
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model with d-measure based on y-support outperforms other
forecasting regression models.

TABLE I MSE OF REGRESSION MODELS

Regression model 5-fold CV
MSE

Choquet measure
Integral 8 48.7672
Regression A 49.1832
model 53.9582
Ridge regression 59.1329
Multiple linear 65.0664

regression

B. FatData[3,5,9,10, 11]

In this study, anthropometric dimensions were measured
following a standard protocol [11]. High was measured to the
nearest 0.1 cm using anthropometers. Body weight was
measured to the nearest 0.1 kg at the same time the bioelectric
impedance was measured using a body fat analyzer (TBF310;
Tanita, Tokyo, Japan) to estimate the percentage of body fat
(%fat). Skinfold thicknesses at biceps, triceps, subscapular, and
suprailiac of the right side of body were measured with GMP
skinfold calipers (Siber Hegener and Co. Ltd, Switzerland).
The measurements were performed by one experienced
operator that took two repeated measurements at the test site of
the same subject. The mean of the two readings from each site
was used to calculate body composition.

A real data set with 128 samples from a elementary school
in Taiwan including the independent variables, 4 Skinfold
determination values, and the dependent variable, the
measurements of the BIA of each student listed in Table IV is
applied to evaluate the performances of three Choquet integral
regression models with P-measure, A-measure and L-measure
based on y-support respectively, a ridge regression model, and
a multiple linear regression model by using 5-fold cross
validation method to compute the mean square error (MSE) of
the dependent variable.

The singleton measures, y-support of the P-measure,
A-measure and d-measure are listed as follows which can be
obtained by using the formula (19).

{0.2396, 0.2466, 0.254, 0.2596}

The formulas of MSE is by using 5-fold cross validation
method to compute the mean square error (MSE) of the depen
dent variable.

For any fuzzy measure, p-measures, once the fuzzy
support of the p-measure is given, all event measures of | can
be found, and then, the Choquet integral based on p and the
Choquet integral regression equation based on p can also be
found.

The singleton measures, y-support of the P-measure,
A-measure and L-measure can be obtained by using the
formulas (6).
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The experimental results of five forecasting models are
listed in Table II. We find that the Choquet integral regression
model with 8-measure based on y-support outperforms other
forecasting regression models.

TABLE II MSE OF REGRESSION MODELS

Regression model 5-fold CV
MSE

Choquet measure
Integral 8 14.4228
Regression A 14.9218
model 18.3846
Ridge regression 15.7434
Multiple linear 16.1122

regression

VIII. CONCLUSION S

In this paper, multivalent fuzzy measure, d-measure, is
proposed. This new measure is proved that it is of closed form
with infinitely many solutions, and it can be considered as an
extension of the two well known fuzzy measures, A-measure
and P-measure. By using 5-fold cross-validation RMSE, an
experiment is conducted for comparing the performances of a
multiple linear regression model, a ridge regression model, and

the Choquet integral regression model with respect to P-measure,

A-measure, and our proposed d-measure based on y-support
respectively. The result shows that the Choquet integral
regression models with respect to the proposed 6-measure based
on y-support outperforms other forecasting models.

In the future, we will apply the proposed Choquet integral
regression model with fuzzy measure based on y-support to
develop multiple classifier system.
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TABLE III THE DATA SET WITH FOUR COURSES AND SCIENCE SCORES OF THE BCT

No. C1 Cc2 C3 C4 BCT No. C1 Cc2 C3 C4 BCT
1 72 66 78 72 19 3 66 68 75 74 25
2 86 80 82 81 35 32 68 70 74 76 40
3 56 63 69 75 21 33 57 65 75 70 24
4 78 86 86 86 33 34 74 70 80 75 35
3 66 72 80 76 23 33 49 60 69 64 13
6 68 74 77 80 28 36 51 60 63 64 18
7 74 86 87 88 44 37 58 64 68 66 32
8 54 56 62 68 7 38 73 78 84 81 39
9 71 74 80 77 26 39 56 56 65 61 6

10 68 70 80 75 33 40 61 62 70 70 25

1 53 56 70 63 22 41 57 60 68 64 23

12 67 70 80 75 35 42 57 64 67 70 26

13 70 66 70 74 13 43 50 52 68 60 7

4 60 65 75 70 23 4 84 80 76 72 49

13 68 68 78 76 35 43 62 66 76 71 22

16 58 66 76 71 37 N 70 74 78 82 32

17 61 66 72 78 33 97 69 70 80 75 26

18 68 68 80 74 26 48 63 74 74 74 42

19 56 66 76 71 21 i 66 78 80 82 39

20 59 62 70 78 29 50 67 70 80 75 31

2 62 64 76 70 36 1 56 65 75 70 23

22 71 72 78 75 26 2 50 54 66 60 18

23 74 63 69 75 12 I3 71 75 85 80 41

24 59 70 80 76 37 il 74 77 80 85 26

23 75 75 85 80 39 33 71 72 76 80 31

2 73 78 84 81 24 36 60 65 75 70 21

27 62 68 72 74 29 57 59 57 70 68 17

28 77 74 80 76 42 58 50 56 65 68 13

G 63 60 68 69 17 59 72 76 80 78 38

30 56 61 75 68 22 60 81 76 78 80 33

C1 : physics and chemistry
C2 : biology

C3 : geoscience
C4 : mathematics
BCT : Basic Competence Test of nature science
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Table IV Measurements of BIA and four skinfold determinations of percent body fat

Nol BIA biceps | triceps | Sub- S.up- No [BIA biceps triceps Sub- S}lp—
scapular railiac scapular| railiac
1] 118 15.8 16.2 27.6 16.3 65 | 22.8 27.4 32.2 33.6 24.5
21178 | 204 12.8 35.6 23.0 66 5.4 14.4 8.0 17.2 17.5
3 62 10.4 9.4 12.6 8.2 67 8.6 9.6 11.4 14.4 14.8
41 70 10.2 5.6 10.6 13.6 68 7.4 9.6 8.0 10.2 13.4
5] 52 10.8 12.0 13.8 11.8 69 | 20.2 29.2 28.2 40.0 23.9
61202 | 24.6 39.8 40.0 34.7 70 | 28.4 30.6 38.6 39.8 39.5
7| 14.8 18.8 22.4 24.8 18.6 71 6.8 10.4 8.8 14.6 15.2
8| 124 18.2 20.2 27.6 18.4 72 11.0 12.4 10.4 14.4 11.7
91 17.0 | 20.6 21.2 27.8 21.6 73 | 20.8 30.8 38.8 40.0 37.7
10| 16.6 | 22.6 18.8 32.6 16.6 74 | 25.0 27.6 40.0 40.0 29.6
11] 102 | 13.4 8.4 12.8 15.1 75 4.8 6.2 5.6 7.0 9.7
12 21.0 | 26.7 36.2 40.0 23.9 76 8.4 7.0 8.0 11.8 15.6
13 10.0 | 134 17.4 17.8 18.1 77 11.0 14.0 10.0 12.4 17.7
14| 9.8 13.8 11.6 19.2 15.5 78 10.6 11.6 7.0 14.4 12.9
15| 8.6 10.8 114 14.4 8.5 79 12.4 16.8 17.0 25.8 14.9
16 21.8 | 25.6 36.6 36.8 31.7 80 11.4 14.0 20.8 26.4 25.1
17| 252 | 294 30.2 30.6 31.2 81 12.8 15.8 20.2 19.8 16.4
18] 10.2 | 11.0 10.2 14.8 12.2 82 12.0 15.6 16.0 22.8 17.3
19] 104 15.8 13.0 25.6 16.6 83 13.0 20.4 24.0 27.0 26.2
20| 17.6 | 22.6 23.2 34.6 23.2 84 14.2 15.4 224 22.8 18.9
211 126 | 124 14.2 16.0 14.2 85 11.0 16.4 14.2 15.8 17.9
22 9.0 11.2 9.4 11.8 9.3 86 | 22.4 29.8 35.0 36.2 28.5
23 122 | 19.2 17.4 27.8 19.7 87 6.4 7.6 8.6 114 12.1
24| 4.6 7.0 8.8 11.2 7.2 88 6.8 10.6 9.6 14.6 12.2
25| 6.4 8.8 11.0 12.6 10.8 89 16.2 18.4 27.2 27.4 24.9
261 23.8 | 29.0 37.0 35.0 30.7 90 | 224 26.8 25.4 33.4 30.4
27| 84 15.8 17.8 23.0 21.6 91 9.6 11.2 10.4 18.0 11.7
28] 12.2 | 16.6 16.4 20.6 18.7 92 10.8 17.2 24.0 24.8 21.9
29| 7.2 12.8 8.6 18.6 15.2 93 13.0 16.2 12.4 18.4 142
30 214 | 31.2 31.4 39.4 28.6 94 5.6 12.4 11.4 15.6 14.5
31] 182 | 23.0 40.0 40.0 28.2 95 19.4 25.0 36.2 39.0 29.9
32] 9.2 12.6 40.0 17.8 16.0 96 14.4 22.4 29.8 35.0 24.8
33] 10.2 18.8 17.8 20.8 18.4 97 | 254 29.4 37.0 40.0 24.6
34] 192 | 244 35.2 35.0 34.1 98 9.4 11.2 11.4 12.4 8.9
35| 6.8 12.0 8.0 14.4 16.1 99 17.4 22.6 19.4 31.6 22.7
36] 16.8 | 20.8 25.6 27.8 20.7 100 | 24.0 30.8 40.0 40.0 29.4
37] 358 | 38.6 40.0 40.0 30.1 101 3.8 6.0 6.4 6.8 10.8
38] 10.0 | 11.6 10.4 18.6 8.3 102 11.0 19.4 11.6 18.4 13.7
391 54 12.2 12.4 214 19.2 103 | 22.6 24.4 40.0 40.0 33.3
40 11.2 | 18.0 23.6 30.8 22.1 104] 9.2 10.0 11.0 19.2 13.4
41| 5.4 11.2 6.8 11.6 11.9 105] 18.2 19.0 31.0 29.4 24.5
421 7.6 8.4 9.4 13.6 12.8 106 6.8 12.4 14.0 17.8 14.1
431 6.6 9.8 9.6 12.0 9.3 107 74 11.6 10.0 16.0 11.0
441 324 | 372 40.0 40.0 18.2 108 9.2 10.6 12.4 14.4 12.7
451 7.8 14.0 11.0 17.8 31.3 109 29.4 23.6 39.8 40.0 37.4
46| 17.8 | 26.6 34.2 40.0 22.8 110| 6.8 7.8 9.8 12.8 10.9
471 22.0 | 27.8 38.2 394 23.6 111] 124 14.6 15.8 19.8 16.9
48] 144 15.8 18.8 23.8 14.9 112 82 9.8 9.2 16.0 14.5
491 15.8 18.4 21.4 24.0 24.9 113 164 20.8 25.2 30.4 24.9
50| 7.4 12.8 10.2 17.0 14.3 114] 94 11.4 12.0 21.8 14.3
51] 16.2 | 29.0 21.6 29.8 24.1 115] 16.4 22.4 33.2 36.8 25.1
52| 6.0 7.4 7.6 9.8 8.6 116 7.0 11.4 13.8 17.4 11.2
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53] 12.2 15.4 16.2 18.8 17.8 117 10.4 12.6 14.8 23.8 18.0
541 11.6 12.0 9.8 13.0 8.9 118 5.6 8.2 10.2 8.6 7.7
55| 17.8 22.6 38.0 31.0 24.8 119 10.8 11.8 17.8 21.2 19.9
56| 13.2 16.8 18.6 23.4 20.7 120 9.6 15.8 14.4 19.4 18.6
57| 4.4 7.2 8.2 9.8 14.3 121 5.0 6.8 7.4 9.4 6.0
58] 16.2 21.8 28.2 32.6 27.2 122 9.8 12.2 12.4 15.4 13.5
591 114 19.4 28.8 32.8 22.3 123 | 13.8 18.0 16.4 21.0 19.3
60| 11.2 13.0 18.8 22.6 21.9 124 8.8 12.8 9.8 11.8 13.3
61| 8.6 11.4 7.2 10.2 7.5 125 15.8 21.0 35.4 39.8 27.3
61| 20.4 26.2 31.0 32.8 25.8 126 | 10.8 16.6 15.6 23.2 16.5
63| 7.0 8.8 11.6 9.4 12.0 127 9.0 10.6 10.0 16.8 11.9
64| 14.6 17.4 12.8 16.8 14.7 128 8.8 12.4 10.0 10.8 11.3
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Theory and Application of the Composed Fuzzy
Measure of L-Measure and Delta-Measures

Hsiang-Chuan Liu, Chin-Chun Chen, Der-Bang Wu, and Tian-Wei Sheu

solution of fuzzy measure, the former is not a closed form, and
Abstract—The well known fuzzy measures-measure and the latter is not sensitive enough. Two multivalent fuzzy
P-measure, have only one formulaic solution. Two multivalent fuzapeasures with infinitely many solutions were proposed by our
measures with infinitely many solutions were proposed by orevious works, called L-measure [7-9] antheasure [10,11],
previous works, called L-measure adwiheasure, but the former do but L-measure do not include the additive measure and
not include the additive measure as the latter and the latter has no

: $5Reasure has not so many measure solutions as L-measure.
many measure solutions as the former. Due to the above drawbacks, in

this paper, an improved fuzzy measure composed of above b ’e to the above drawbacks, in this pa_per, an improved fuzzy
measure composed of above two multivalent fuzzy measures,

denoted LJ -measure, is proposed. For evaluating the Choquet . o .
. . ) HenotedL(, -measure, is proposed. This improved multivalent
integral regression models with our proposed fuzzy measure and other

different ones, a real data experiment by using a 5-fol@zzy measure is not only including the additive measure, but
cross-validation mean square error (MSE) is conducted. Ti#so having the same infinitely many measure solutions as
performances of Choquet integral regression models with fuztymeasure. For evaluating the Choquet integral regression
measure based; -measure, L-measuré;measure)-measure, and models with our proposed fuzzy measure and other different
P-measure, respectively, a ridge regression model, and a multipfa€S, a real data experiment by using a 5-fold cross-validation
linear regression model are compared. Experimental result shows t@an square error (MSE) is conducted. The performances of
the Choquet integral regression models with respect to extensiofdioquet integral regression models with fuzzy measure based

L-measure based grsupport outperforms others forecasting m0d9|3L5-measure, L-measur&measurel-measure, and P-measure,

K rds—Lambd P Delt respectively, a ridge regression model, and a multiple linear
Eywol ambda-measure, measure, elta-measur epression model are compared.

G - t, d f , Ch t int : . . . .
amma-support, - composed  fuzzy - measure oquet Integralipig paper is organized as follows: The multiple linear

regression model. | g ) ) : )
regression and ridge regression [1] are introduced in section Il;
two well known fuzzy measur@;measure [2] and P-measure
[5], are introduced in section Ill; our new measudrejeasure,
|. INTRODUCTION is introduced in section 1V; the fuzzy supporsupport [7] is

hen there are interactions among independent variabl?g,scribEd in section V; the Choquet integra_l regr_ession_model
traditional multiple linear regression models do no 6-8] based on fuzzy measures are described in section VI;

perform well enough. The traditional improved methog€XPeriment and result are described in section VII; and final
exploited ridge regression models [1]. In this paper, we sugg&§¢ction is for conclusions and future works.
using the Choquet integral regression models [7-15] based on
some single or compounded fuzzy measures [2-5, 7-15 ] to
improve this situation. The well-known fuzzy measured]. THEMULTIPLE LINEAR REGRESSION RIDGE REGRESSION
A-measure [2-4] and P-measure [5] have only one formulaic LetY=XB+g, &~ N(Q,azln) be a multiple linear

P -1 . .
Manuscript received May 20, 2009: Revised version received June 28, 200@del, 5 = (X'X) X'Y be the estimated regression
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Taichung, 41345, Taiwan (e-mail: Ihc@asia.edu.tw). estimated ridge regression coefficient vector, Hoerl, Kenard and
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are concisely introduced as follows. Note that for any subset of X, A, P-measure considers only the
maximum value and will lead to insensitivity.

A. Axioms of Fuzzy Measures

Definition 1 fuzzy measure [2-4] E. L-measure
A fuzzy measureu on a finite set X is a set function Definition 5 L-measure [7-9]
u:2* - [0]] satisfying the following axioms: For given a singleton measu&é x) , L-measure,g, , is a fuzzy
measure on a finite set XX| = n, satisfying:
1) 4(@)=0, u(X) =1 (boundary conditions) ~ (2) 1) LO[o) ®)
2) AOB= u( A< u(B) (monotonicity) (3) 2) °AD X, n-| A+( A-1) L> 0=
| (A-DLY o ¥ 1- maf { ¥]]
B. Singleton Measures g (A=max{ ]+ e
- . ) [n-[A+(A-) > 9
Definition 2 singleton measure [2-7] JOX
A singleton measure of a fuzzy measuyreon a finite set X is  Where the real number, L, is also called the determine
afunctions: X - [0,]] satisfying: coefficient of L-measure.
Theorem 1 [7-9]
(i) for eachL [J[0, ), L-measure is a fuzzy measure, in other
S( X) - ,u({ >}) X X Q) words, L-measure has infinitely many solutions of fuzzy
s( x) is called the fuzzy density of singleton measures, for eadh[1[0, ).

(i) LO[O, ), L-measure is an increasing function on real

C. /A-measure number L.

Definition 3 A-measure [3] (i) if L =0 then L-measure is just the P-measure

For a given singleton measuresismeasureg, , is a fuzzy

measure on a finite set X, satisfying: F. J-measure
Definition 6 8-measure [10,11]
A BO2*, AN B=g¢, AU B X For given singleton measus{ X) , as-measure g, is a fuzzy
=0, (AU B) ) measure on a finite set XX| = n, satisfying:
5
:gA(A)+gA(B)+/]g1(A)g(3 1) 5D[—1,]],ZS(X):1 (10)
xOX

n

[[t+2s(x)]=2+1>05(x)= a({d) @ 2 9(0)=0.0(x)=1 an

= ) i 3) DAL X, A# X=

Where the real numbey, is also called the determine
coefficient ofA-measure. 1+ 5 Z s(x)
95 (A) =[1+ o maxs( x) ¢ - omaxs( x)
Note that once the singleton measure is known, we can XOA 1+ 52 s(x) XOA
obtain the values @funiquely by using the previous polynomial XJA
equation. In other worda;measure has a unique solution (12)
without closed form. Moreover, for given singleton measures/here the real numbes, is also called the determine
If ZS( X)=1theng ( A: Z 6 X, in other word, coefficient ofé-measure.
xOX xOA
if > s(¥) =1 then\-measure is just the additive measure Theorem 2 [11]
XOX 0) JD[—l,]] ,5-measure is an increasing functiondon

(iiy if & =—1, thens-measure is just the P-measure
(iii) if 0 =0, thens-measure is just the additive measure

D. P-measure (iv) if =1<9 <0, thens-measure is a sub-additive

Definition 4 P-measure [5] measure
For given a singleton measures s, P-meaggrgeis a fuzzy (v) if 0<J <1, thens-measure is a supper-additive
measure on a finite set X, satisfying: measure.
JA02%

=0.(A)= max {s( %} = xDA>{g, } )
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(vi) If z s(x)=1and 5 =0 then & -measure is just the (V) for eachl [][0,»),

XX P-measureg L-measures L, -measure
A -measure Proof.
(vii) P -measure, additive measure ahdmeasure are the (i) the boundary conditions are trivial, Now to prove the
special cases ob) -measure monotonicity.
Let0A, BO 2, A B to proveg, (A< g, (B (15)
IV. COMPARISON BETWEEN TWO FUZZY MEASURES I rgje}\x[s ] - rgg{ g ﬂ ’
Definition 7 £4 —measure< 1, - measu, since (B-OL(B) _  (A-DLu(A (16)
4, —measure 14 — meas [8,9] [n-[B[+(8-1) L] [n-|A+( A-1) |
For any given fuzzy density functios( x), on a finite set, \We can obtaing, (B)2g, (A
X, If g andy, are two fuzzy measures, satisfying If maxs(x)]=maf § ]+ a & C 17)
A)< ,O0A0 X, then we say that; -measure is not
94 ( ) 9, ( 'Q y at, (| B| 1)|_'u |:1_ rpﬂg){s( >ﬂ:|
larger thanu, -measure, on, -measure is not smaller 9, (B)- g, (A=
thang, -measure, denoted as-measures £, — masul,or [ -|g+ (| B- ) ] (%)
M, —measure (4 — measL [ _ }
Theorem 3 [8,9] + (|B| —1)L,u(B) _ (| 4_1) L,u( 'A) ! rI]DaA){S( X)]
For any given fuzzy density functios(,x), on a finite set, X, [n—| B +(| 51—1) L] [n—| 4+(| 4\—1) L] u(X)
P-measure is not larger than any other fuzzy meaguyéhat is (18)
P - measures /- measu (B|-1)Lu(B [1 ma }
Since 1- Bl XDAX{S( g >0 (19)
[n-18{+(18-1) L]u(X)
V. COMPOSEDMEASURE OFL- METHOD AND-
DELTA-MEASURES [l_ rymax{s X ﬂ

and >0 (20)

H(X)

A. Definition of Generalized L-measure
We can also obtain thay, (B)= g (A, therefore

Definition 8 Generalized L-measure
For given singleton measus{ X) , a generalized L-measure L, -measure is a fuzzy measure.

based on a fuzzy measure, L, , is a fuzzy measure on a finite (ir)

set X,|X| = n, satisfying: _ —m +[M_1)L]1“(A)[1‘ ”Q?{S( )m
1) Lo[os) gy O R
2) "A0X,n-|A+(A-1)L> 0= ()= (A-Du(A [1‘ mao{ § ﬂ}[ | N
_ LA (A 1-maf 4 4] u(x) 0| AL+ (| A-9) L
gL‘,(A) - XD?{S( )ﬂ [n_‘4+(‘ A_l) L]u( X) (21)

HenceL,-measure is an increasing function on L.
(iii), (iv) and (v) are ftrivial.

14

Where the real number, L, is also called the determiné :
coefficient of L,-measure.

B. Definition of L;-measure

Theorem 4

Definition 9 L, -measure
(i) For eacH_[J[0,), L, -measure is a fuzzy measure, °

For given singleton measus x) , the composed

measure of L-measure atddaneasure , denoted
Ls-measureg, , is a fuzzy measure on a finite set X,

In other words,L , -measure has infinite many fuzzy
measures with determine coefficient L,[1[0, ) .
(i) LO[0,0) L,-measure is an increasing function on

L |X| = n, satisfying:

(iii) if L =0 then L, -measure is just the-measure 1) LO[-Le), D s(x)=1 (22)
xdX

iv) if £ -measure is the P-measure t measure is just the

(iv) if 12 Hepr j 2 g.(9)=0,g,(X)=1 (23)

L-measure
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3) DAO X = Therefore, for eachL [J[-1,00) , L, -measure is also an
increasing function on L’
(i), (iv), (v), (vi), (vii) and (viii) are trivial.
Mn;as( X) ifL=- 1
(1+L)Zs(x)[1+ LmDans( ’ﬂ VI. r .SUPPORT
g, (A= <A ” -Lmaxs(x) if LO(-1,0  Definition 10: v -support [7]
s 1+LY°s(¥) XOA ; i ini
=~ For given singleton measure s of a fuzzy meaguwe a finite
set X, if » s(X)=1, then s is called a fuzzy support measure
(g5 4] | 2,504 v supp
[n_‘pw '—(W‘ )Jz 1)) %S( X it LO(0s) of u, or a fuzzy support gf, or a support ofi. One of fuzzy
supports isntroduced as below.

(24) Letu be a fuzzy measure on a finite §ét:{ Xy Xoyeees )g} Y

. be global response of subjectnd f; (XJ- ) be the evaluation
C. Important Properties ol ;-measure

of subjecti for singletonx;, satisfying:
Theorem 5 Important Properties of ; -measure
(i) LO[-1,0), L,-measure is a fuzzy measure family 0<f; (Xj ) <li=12,..N ,j=12.n (25)
(i) LO[-1,00), Ls-measure is an increasing function on L

(iii) if L =-1 thenL,-measure is just the P-measure 1+r (f (xj ))
y(x)= Cj=12..n  (26)

(iv) if L =0 thenL,-measure is just the additive measure

(v) if =1<L <O thenL,-measure is a sub-additive measure k:1[1+ r(f (Xk))]
(vi) if 0<L <co thenL;-measure is a supper-additive S
measure where r(f (xj )) =15 (27
(vii) If ZS(X) =land L =0 then L, -measure is just the S S‘i
XOX 1Q 1 2
A -measure S = N [ Y _Nz y] (28)
(viii) P -measure, additive measure afdmeasure are the i=1 i

=1
special cases ol -measure 1& 1N 2
Proof. ’ szj =WZ{ f )ﬁ)‘ﬁz f( X)} (29)

(i) if LO[-1,0), then L, -measure is a special case of

d-measure, sinces-measure is a fuzzy measure, then 18 10 1

L;-measure is also a fuzzy measure. %’Xj :NZ‘( Y_N y]{ If( )J() _NZ If( 3()} (30)
if LO[0,) , then L, -measure is a special case of = = =

generalized _L-measure based_on the additive measooe, satisfying 0 < y(xj ) <1 and Zn:V(Xj ) -1 (31)
any generalized L-measure is also a fuzzy measure, then =t

L;-measure is also a fuzzy measure. then the functiony: X — [O]] satisfying/J({ x}) _ y( x),

Therefore, for each. [J[-1,0) , L,-measure is a fuzzy _
Ox O X is a fuzzy support qf, calledy-support ofj.

measure.
(i) if LO[-1,0), then L, -measure is a special case of
d-measure, sincé-measure is an increasing function with
upper bound, additive measure , tHep-measure is also an VIl.  CHOQUETINTEGRAL REGRESSIONVIODELS
increasing function with upper bound, additive measure.

i L0 ; } A. Choquet Integral
if [0,00) , then L, -measure is a special case OfDeflnmon 11 Choguet Integral [2-6]

generalized L-measure based on the additive measooe, | ety be a fuzzy measure on a finite set X. The Choquet integral
generalized L-measure based on the additive measure is Q)ﬁq : X - R, with respect tqu for individual i is denoted by

an increasing function with lower bound, additive measure,

then L;-measure is also an increasing function with lower J. fd,u Z[ ( )— t(%j_l)”ﬂ(,%)) ,i=12,...N

bound, additive measure.
(32)
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where f; (X(O)):O, f, (x(j))

0< fi(x(l))s fi(x(z))s...s ﬁ()in))
A =[x 0}

been permuted so that

(33)

(34)

B. Choquet Integral Regression Models

Definition 12 Choquet Integral Regression Models [7-15]
Let y;, ¥s,..., )y be global evaluations of N objects and

f(%;)s f2(% )i (%) 2 1= 1.2,...1, be their
evaluations ofx;, where f, : X - R ,i=12,....N.

Letu be a fuzzy measurey, SR,
yi=a+ﬂfcfidgl+e, e~ r@o,az) , EL2,..,N (35)
(.5)=arg %”{ZN:(M —a-p[. fidgﬂ)z} (36)
! i=1

then V. =d+,@’j f.dg,, i=1,2,...,N is called the

Choquet integral regression equatiomupivhere

B=S,1S (37)
L 1Y ~ 1
G=q 2% AN he, (38)
N 1 N 1 N
Zl:{y. ‘N;MM ﬁdgyu—NkZ_;jfkdgyu}
= N-1
(39)
N 1 2
ZU fidg. = | fkdg,,u}
Sﬁ — i=1 k=1 (40)

VIIl. EXPERIMENT AND RESULT

A. Education Data

Hsiang-Chuan Liu, Chin-Chun Chen,
Der-Bang Wu, Tian-Wei Sheu

indicates that the indices haveModels with P-measuré;measure and-measurg L-measure

measure antl; -measure based opsupport respectively, a
ridge regression model, and a multiple linear regression model
by using 5-fold cross validation method to compute the mean

square error (MSE) of the dependent variable. The formula of
MSE is

1< .
MSE==>"(y~-V)? (41)
N =
The singleton measuressupport of the P-measure,
A-measurej-measure, L-measure ahg-measure are listed as

follows which can be obtained by using the formula (26).

{0.2488, 0.2525, 0.2439, 0.2547} (42)

For any fuzzy measurg@;measures, once the fuzzy support
of thep-measure is given, all event measureg oén be found,
and then, the Choquet integral basedi@md the Choquet
integral regression equation basediaran also be found by
using above corresponding formulae.

The experimental results of seven forecasting models are
listed in Table I. We find that the Choquet integral regression
model with L -measure based grsupport outperforms other

forecasting regression models.

TABLE | MSE OF REGRESSIONVIODELS

Regression model 5-fold CV
measure MSE

Choquet L, 47.5722
|ntegra| L 48.4610
Regression S 48.7672
model » 49.1832
p 53.9582

Ridge regression 59.1329
Multiple Ilnear 65.0664

regression
B. Fat Data

In this study, anthropometric dimensions were measured

following a standard protocol [11, 16]. High was measured to

the nearest 0.1 cm using anthropometers. Body weight was

The total scores of 60 students from a junior high school measured to the nearest 0.1 kg at the same time the bioelectric
Taiwan are used for this research [9-13]. The examinations'BiPedance was measured using a body fat analyzer (TBF310;
four courses, physics and chemistry, biology, geoscience a-%ﬁn'ta' Tokyo, Japan) to estimate the percentage of body fat
mathematics, are used as independent variables, the score of {@0): Skinfold thicknesses at biceps, triceps, subscapular, and
Basic Competence Test of junior high school is used assyprailiac of the right side of body were measured with GMP
dependent variable. skinfold calipers (Siber Hegener and Co. Ltd, Switzerland). The
measurements were performed by one experienced operator that
The data of all variables listed in Table Il is applied téook two repeated measurements_ at the test sne_of the same
ject. The mean of the two readings from each site was used

evaluate the performances of five Choquet integral regressﬁlt"P o
to calculate body composition.
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A real data set with 128 samples from a elementary schdmdsed ony-support respectively. The result shows that the
in Taiwan including the independent variables, 4 Skinfol€hoquet integral regression models with respect to the proposed

determination values, and the dependent variable, the -measure based grsupport outperforms other forecasting

measurements of the BIA of each student listed in Table IV iS;4els.
applied to evaluate the performances of three Choquet integral|, 1o future, we will apply the proposed Choquet integral

regression models with P-measulemeasure, 5 -measure, roqression model with the new fuzzy measure based on
L-measure antl;-measure based grsupport respectively, a y-support to develop multiple classifier system.
ridge regression model, and a multiple linear regression model
by using 5-fold cross validation method to compute the mean
square error (MSE) of the dependent variable. ACKNOWLEDGMENT
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follows which can be obtained by using the formula (26).
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TABLE Il THE DATA SET WITH FOUR COURSES ANDSCIENCE SCORES OFTHE BCT

No. | c1 C2 c3 C4 BCT No.| c1 c2 c3 C4 BCT
1 72 66 78 72 19 31 66 68 75 74 25
2 86 80 82 81 35 32 68 70 74 76 40
3 56 63 69 75 21 33 57 65 75 70 24
4 78 86 86 86 33 34 74 70 80 75 35
5 66 72 80 76 23 35 49 60 69 64 13
6 68 74 77 80 28 36 51 60 63 64 18
7 74 86 87 88 44 37 58 64 68 66 32
8 54 56 62 68 7 38 73 78 84 81 39
9 71 74 80 77 26 39 56 56 65 61 6
10 68 70 80 75 33 40 61 62 70 70 25
11 53 56 70 63 22 41 57 60 68 64 23
12 67 70 80 75 35 42 57 64 67 70 26
13 70 66 70 74 13 43 50 52 68 60 7
14 60 65 75 70 23 44 84 80 76 72 49
15 68 68 78 76 35 45 62 66 76 71 22
16 58 66 76 71 37 46 70 74 78 82 32
17 61 66 72 78 33 47 69 70 80 75 26
18 68 68 80 74 26 48 63 74 74 74 42
19 56 66 76 71 21 49 66 78 80 82 39
20 59 62 70 78 29 50 67 70 80 75 31
21 62 64 76 70 36 51 56 65 75 70 23
22 71 72 78 75 26 52 50 54 66 60 18
23 74 63 69 75 12 53 71 75 85 80 41
24 59 70 80 76 37 54 74 77 80 85 26
25 75 75 85 80 39 55 71 72 76 80 31
26 73 78 84 81 24 56 60 65 75 70 21
27 62 68 72 74 29 57 59 57 70 68 17
28 77 74 80 76 42 58 50 56 65 68 13
29 63 60 68 69 17 59 72 76 80 78 38
30 56 61 75 68 22 60 81 76 78 80 33
C1 : physics and chemistry
C2 : biology

C3: geoscience
C4 : mathematics
BCT : Basic Competence Test of nature science
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Table IV Measurements of BIA and four skinfold determinations of percent body fat

Nol BIA biceps | tricep§ Sub- S.u.p— No |BIA biceps triceps Sub- S.u.p—
scapulal railiac scapulaf railiac
1| 11.8] 15.8 16.2 27.6 16.3 65| 22.8 27.4 32.2 33.6] 24.5
2| 17.8| 20.4 12.8 35.6 23.0 66| 5.4 14.4 8.0 17.2| 175
3| 6.2 10.4 9.4 12.6 8.2 67| 8.6 9.6 11.4 14.4] 14.8
41 7.0 10.2 5.6 10.6 13.6 68| 7.4 9.6 8.0 10.2| 134
5| 5.2 10.8 12.0 13.8 11.8 69| 20.2 29.2 28.2 40.0] 23.9
6| 20.2| 24.6 39.8 40.0 34.7 70| 28.4 30.6 38.6 39.8] 39.5
7| 14.8| 18.8 22.4 24.8 18.6 71| 6.8 10.4 8.8 14.6] 15.2
8| 124 | 18.2 20.2 27.6 18.4 721 11.0 12.4 104 14.4 11.7
9| 17.0| 20.6 21.2 27.8 21.6 73| 20.8 30.8 38.8 40.0] 37.7
10| 16.6 | 22.6 18.8 32.6 16.6 74| 25.0 27.6 40.0 40.0] 29.6
11] 10.2| 134 8.4 12.8 15.1 75| 4.8 6.2 5.6 7.0 9.7
12| 21.0| 26.7 36.2 40.0 23.9 76| 8.4 7.0 8.0 11.8] 15.6
13| 10.0| 134 17.4 17.8 18.1 771 11.0 14.0 10.0 12.4 17.7
14] 9.8 13.8 11.6 19.2 15.5 78] 10.6 11.6 7.0 14.4 12.9
15| 8.6 10.8 11.4 14.4 8.5 79| 12.4 16.8 17.0 25.8 14.9
16| 21.8| 25.6 36.6 36.8 31.7 80| 11.4 14.0 20.8 26.4| 25.1
17| 25.2| 294 30.2 30.6 31.2 81| 12.8 15.8 20.2 19.8 16.4
18] 10.2| 11.0 10.2 14.8 12.2 82| 12.0 15.6 16.0 22.8| 17.3
19| 10.4| 15.8 13.0 25.6 16.6 83| 13.0 20.4 24.0 27.0| 26.2
20| 17.6 | 22.6 23.2 34.6 23.2 84| 14.2 15.4 22.4 22.8| 18.9
21| 126 | 124 14.2 16.0 14.2 85| 11.0 16.4 14.2 15.8 17.9
22| 9.0 11.2 9.4 11.8 9.3 86| 22.4 29.8 35.0 36.2 28.5
23| 12.2 ]| 19.2 17.4 27.8 19.7 87| 6.4 7.6 8.6 11.4 12.1
24| 4.6 7.0 8.8 11.2 7.2 88| 6.8 10.6 9.6 14.6] 12.2
25| 6.4 8.8 11.0 | 12.6 10.8 89| 16.2 18.4 27.2 27.4| 24.9
26| 23.8 | 29.0 37.0 35.0 30.7 90| 22.4 26.8 25.4 334 30.4
27| 8.4 15.8 17.8 23.0 21.6 91| 9.6 11.2 10.4 18.0 11.7
28| 12.2 | 16.6 16.4 20.6 18.7 92| 10.8 17.2 24.0 24.8 21.9
29| 7.2 12.8 8.6 18.6 15.2 93| 13.0 16.2 12.4 18.4 14.2
30| 214 31.2 31.4 39.4 28.6 94| 5.6 12.4 11.4 15.6] 14.5
31| 18.2 | 23.0 40.0 40.0 28.2 95| 194 25.0 36.2 39.0 29.9
32| 9.2 12.6 40.0 17.8 16.0 96| 14.4 22.4 29.8 35.0 24.8
33| 10.2 | 18.8 17.8 20.8 18.4 97| 25.4 29.4 37.0 40.0 24.6
34| 19.2 | 244 35.2 35.0 34.1 98| 9.4 11.2 11.4 12.4 8.9
35| 6.8 12.0 8.0 14.4 16.1 99| 174 22.6 19.4 31.6 22.7
36| 16.8| 20.8 25.6 27.8 20.7 1000 24.0 30.8 40.0 40.0 29.4
37| 35.8| 38.6 40.0 40.0 30.1 101} 3.8 6.0 6.4 6.8 10.8
38| 10.0| 11.6 10.4 18.6 8.3 102 11.0 19.4 11.6 18.4 13.7
39| 5.4 12.2 12.4 21.4 19.2 103 22.6 24.4 40.0 40.0 33.3
40| 11.2| 18.0 23.6 30.8 22.1 104 9.2 10.0 11.0 19.2 13.4
41| 5.4 11.2 6.8 11.6 11.9 105| 18.2 19.0 31.0 29.4 24.5
42| 7.6 8.4 9.4 13.6 12.8 1064 6.8 12.4 14.0 17.8] 14.1
43| 6.6 9.8 9.6 12.0 9.3 107| 7.4 11.6 10.0 16.0f 11.0
44| 324 37.2 40.0 40.0 18.2 108§ 9.2 10.6 12.4 144 127
45| 7.8 14.0 11.0 17.8 31.3 109 29.4 23.6 39.8 40.0 37.4
46| 17.8| 26.6 34.2 40.0 22.8 1100 6.8 7.8 9.8 12.8 10.9
47| 220 27.8 38.2 39.4 23.6 111 12.4 14.6 15.8 19.8 16.9
48| 14.4| 15.8 18.8 23.8 14.9 112 8.2 9.8 9.2 16.0 14.5
49| 15.8| 18.4 21.4 24.0 24.9 113 16.4 20.8 25.2 30.4 24.9
50 7.4 12.8 10.2 17.0 14.3 114 9.4 11.4 12.0 21.8] 14.3
51| 16.2 | 29.0 21.6 29.8 24.1 115 16.4 22.4 33.2 36.8 25.1
52| 6.0 7.4 7.6 9.8 8.6 116 7.0 11.4 13.8 174 11.2
53| 12.2| 154 16.2 18.8 17.8 1171 10.4 12.6 14.8 23.8 18.0
541 11.6 | 12.0 9.8 13.0 8.9 118 5.6 8.2 10.2 8.6 7.7
55| 17.8| 22.6 38.0 31.0 24.8 119 10.8 11.8 17.8 21.2 19.9
56| 13.2 | 16.8 18.6 23.4 20.7 1200 9.6 15.8 14.4 19.4] 18.6
57| 4.4 7.2 8.2 9.8 14.3 121 5.0 6.8 7.4 9.4 6.0
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58| 16.2 | 21.8 28.2 32.6 27.2 1220 9.8 12.2 12.4 15.4] 13.5
59 114 | 194 28.8 32.8 22.3 123 13.8 18.0 16.4 21.0 19.3
60 11.2| 13.0 18.8 22.6 21.9 124 8.8 12.8 9.8 11.8f 13.3
61| 8.6 11.4 7.2 10.2 7.5 125 15.8 21.0 35.4 39.8 27.3
61| 20.4 | 26.2 31.0 32.8 25.8 126 10.8 16.6 15.6 23.2 16.5
63| 7.0 8.8 11.6 9.4 12.0 127 9.0 10.6 10.0 16.8) 11.9
64| 146 | 174 12.8 16.8 14.7 128 8.8 12.4 10.0 10.8) 11.3
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A theoretical approach to the completed L-fuzzy measure

Hsiang-Chuan Liu

Department of Bioinformatics, Asia University, Taiwan

Abstract The well known fuzzy measures, A-measure and P-measure, have only one
formulaic solution. An multivalent fuzzy measure with infinitely many solutions of closed form
based on P-measure was proposed by our previous work, called L-measure, but L-measure is not
a completed multivalent fuzzy measure, In this paper, A further improved fuzzy measure, called
completed L-measure, is proposed. Some important properties of this new multivalent fuzzy

measure are also proposed.

Key words A-measure , P-measure, L-measure, completed L-measure

1 Introduction

When interactions among independent variables exist in forecasting problems, the performance of
the multiple linear regression models is not good enough. The traditional improved methods exploited
the ridge regression models [1]. Recently, the Choquet integral regression models based on some
univalent or multivalent fuzzy measures [2,3,4] were used to improve this situation. The well known
fuzzy measures, A-measure [5] and P-measure [6], have only one formulaic solution of fuzzy measure.
A multivalent fuzzy measure with infinitely many solutions of closed form based on P-measure was
proposed by our previous work, called L-measure[3], but it is not a completed multivalent fuzzy
measure. In this paper, an improved multivalent fuzzy measure, called completed L-measure, is
proposed. Some important properties of this new multivalent fuzzy measure are also discussed.

This paper is organized as followings: The basis concepts of fuzzy measures are introduced in
section 2; Comparison between two fuzzy measures is introduced in section 3; L-measures is
introduced in section 4; completed L —measure and its properties is described in section 5; and final

section is for conclusions and the future works.

2 Fuzzy Measures

The well known fuzzy measures, the A-measure proposed by Sugeno in 1974, and P-measure
proposed by Zadah in 1978, are concise introduced as follows

2.1 Definition of fuzzy measures [2, 5]

A fuzzy measure 4 on a finite set X is a set function g,:2* —[0,1]
satisfying the following axioms: g, (#)=0, g, (X)=1(boundary conditions) (1)
AcB=g,(A)<g,(B) (monotonicity) )

2.2 Fuzzy density function [2, 6]
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A fuzzy density function s(x) of a fuzzy measure u on a finite set X is a measurable function

s:X —[0,1] satisfying: s(x)=g, ({x}),Xe X 3)
2.3 A-measure [5]

For each given fuzzy density function s ( x) , a A-measure on a finite set X is a measurable function,
g, :2% —[0,1], satisfying:
(i)A,Be2*,ANB=¢,AUB=X = gl(AUB)z gA(A)+gl(B)+lgi(A)gl(B) 4)

(@) [J[1+4s(x)]=2+1>0,5(x)=g, ({x}) Q)

xeX

2.4 P-measure [6]

For each given fuzzy density function, $(x),a P-measure on a finite set X is a set function,

gp 2% > [0,1], satisfying: "Ae2* =g, (A)= max{s(x)} =max g, ({X}) (6)

XxeA xeA

3 Comparison between two fuzzy measures [4]
Definition 2 4 —measure <y, —masure, 1, —measure > 44 —measure

For any given fuzzy density function, s(x), on a finite set, X, If g andu, are two fuzzy

measures, satisfying g, (A)<g, (A),VAc X , then we say that g -measure is not larger

than u, -measure, or g, -measure is not smaller than 4 -measure, denoted

as 44 —Mmeasure < 4, —masure ,or £, —measure > g, —measure
Theorem 1 For any given fuzzy density function, s(x) , on a finite set, X, P-measure is not larger than
any other fuzzy measure, u,thatis P —measure < z—measure

Proof. For the same given fuzzy density function,s(x), We have g, ({x}) =g, ({x}) =5(x),Vx e X

LetVAc X, if | A[<1, it is trivial, now suppose | Al=k </ X |, and A={X,X,,.... X } = X

From the monotonicity, we have

«
=
—_

>
—
|

«
=
—~
—~—

X

<

[N

x
=
——
~

\

«
=
—
~—

X
——
~—

«
=
—
~—

>

[N
——
~—

«
®
~—

x
=
——
~—

=9, ({X: X0 % }) 2 max[gy ({x})- 9, ({x}).-0, ({xk})J (7

Thatis g, (A) > g, (A), the proof is completed

Definition 3 B- measure [4]

For any given fuzzy density function, S ( X) , on a finite set, X, a B-measure is a set function,
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0 A=¢
s :2¢ > [0,1], satisfying: 0s(A)=4s(x) A={x},xeX 8)
1 |A>LAcX

Theorem 2 For any given fuzzy density function, s(x), on a finite set, X, B-measure is not smaller

than any fuzzy measure, x ,thatis B —measure > x—measure

Proof. It is trivial.

4 L-measures [3, 4]
Definition 4 L-measure

Let Le [0,00), for each given fuzzy density functions(x) on a finite set X, a L-measure is a set

function g, :2* —[0,1] satisfying:

(A-DL3s(0)] 1-max(s()
TAC XX =[Al+ (A =DL>0= g (A)=max{s(x)} + seh

[1X|-[A+(A-1) }Zs(x>

xeX

)

Theorem 3
(i)L-measure is an increasing continuous function on L.
(i)If L =0, then L-measure is just the P-measure

(ii)If L > 0, then L-measure is not smaller than P-measure

5 Completed L-measures
Definition 5 Completed fuzzy measure
A fuzzy measure is completed, if the P-measure and B-measure are the lower and upper limit
fuzzy measures of this measure, respectively.
Theorem 4 L-measure is not a completed fuzzy measure
> s(x)

Proof Since limg,(A)= max{ X)} +4A [ ; { (x)}}th(A),the proof is completed.

Ds(x)

xeX

Definition 6 Completed L- measure, L. -measure

Let Le[O,oo), for each given fuzzy density functions(x) on a finite set X, a completed

L-measure or L -measure is a set function g, _ 2% > [0,1] satisfying:

(A-DLYs(x)] 1-max{s(x)} |

xeA

W [ TATS S0 A st

TAC X[X]=|A+ (A =DL>0= g, (A)=max{s( (10)

Theorem 5 L. -measure is a fuzzy measure

Proof:

(I)  (To prove the boundary conditions; 0 < g L (A)<1L,VAc X)
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If |A| <1, Itis trivial. Let|A| >1, since L, €[0,00) We can obtain

(4- 1)%5 ) 1= 0<mm () + s ) S

P ITATE S (At~ R AT s + A0
(A- I)LZSX[ EA{S(X)}:|

— xeA
Therefore  0<g, (A)= rgeagc{ X)} +

[IX=IA]2s(x)+(|1A-1)L2s(x)

xeA

(12)

Thatis 0<g, (A)<1,VAc X,VLe[0,)
D) (To prove the monotonicity;)

LetL c[0,0),Ac B X if |[A|<1, itis trivial.

If |A| >1, letman{s(x)} = max{s(x)} +a, where0<a<I, (13)

xeA

we can obtain

(B-DLD s(x)
L 1-max{s(} [ F(B)-f(A)]20  (14)

g“:(B)‘g%“‘):{ [EREDXERCRIpYE
where

> s
TR el R0 N [x—AJ—[<A—1>;s<x>}[x—B]}>o

D, =[1X|-[B X5+ (B-1)LZs00>0. B, =[X|~[A]Z s(x)+ (H-1)LEs(>0

xeA

(15)

The proof is completed.
Theorem 6 Basic properties of L. -measure

. For the same given fuzzy density function
(i) L -measure is an increasing continuous function on L.

(i) if L=0 then L. -measure is just the P-measure.
(iii)) P- measure < L -measure < L -measure < B- measure
(iv) VACX:P_I)IOIOQLC(A):QB(A)
(v) L. -measure is a completed multivalent fuzzy measure.
Proof;

(i let f(L)=g, (A and Le(0,x)

[X| - AJOA =D T (0 () 1-mas{s() |

then f'(L)= = >0 (20)

[[x—mxezxs<x>+w—1>gs<x>}

Therefore L. -measure is an increasing function on L.

(i1) (iv) and (v) are trivial.

(iii) From Theorem 1 and Theorem 2, we know that
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2009 [E 5N H St 22 R T 4 HE e

P- measure < L -measure, L. -measure < B- measure (21)

Now, to prove that L -measure < L -measure

LetVAc X, since ) s(x)< >_s(x), then

xeA xeX

(W—l)Lgs(x)[l—rgx{s(x)}J (A- 1)Lzsx[ s(9)
[IX]-A+(A-1)L]2s(x DX\—W]Z (x)+(A )ZS(X)

We can obtain g, (A)<g,_(A), VAcCX,

(22)

Thatis L -measure< L -measure, the proof is completed.

6 Conclusion

In this paper, an improved multivalent fuzzy measure, completed L-measure, is proposed. Some
important properties of this new fuzzy measure are also proposed.

The Choquet integral regression model with the proposed new measure has been practically
applied to an educational data. The experiment is not report here because of the lack of space.

In the future, we will apply the Choquet integral regression model with the proposed new fuzzy

measure to develop multiple classifier system.
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Abstract:

When the multicollinearity within independent variables
occurs in the multiple regression models, its performance will
always be poor. Replacing the above models with the ridge
regression model is the traditional improved method. In our
previous work, we found that, the Choquet integral regression
model with R-measure based on the new support, v-support,
proposed by us has the best performance than before. In this
study, for finding the further improved model, we replaced
R-measure with our new fuzzy measure, L-measure in
Choquet integral regression model with the new support,
y-support. For comparing the Choquet integral regression
model with P-measure, 2-measure, R-measure and L-measure
based on two different fuzzy supports, V-support and
y-support, respectively, the traditional multiple regression
model and the ridge regression model, a real data experiment
by using a 5-fold cross-validation mean square error (MSE) is
conducted. Experimental result shows that the Choquet
integral regression model with L-measure based on v-support
has the best performance.

Keywords:
Fuzzy measure; R-measure; [.-measure; fuzzy support; -
support

1. Introduction

When interactions among independent variables exist
in forecasting problems, the performance of the multiple
linear regression models is poor. The traditional improved
methods exploited the ridge regression models [1]. Recently,
some Choquet integral regression models based on different
fuzzy measures were used by our previous works to further
improve this situation [2], [3], [4]. [3]. [6]

In our previous works [7], [8], we found that if the
Choquet integral regression model based on the same fuzzy
measure is derived from different fuzzy support, then it may
have different performances, in other words, the better

978-1-4244-2239-5/08/$25.00 ©2008 IEEE
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performance of a Choquet integral regression model 1s not
only derived from a better fuzzy measure but also first
derived from a better fuzzy support. Hence, before we find
the better fuzzy measure of a Choquet integral regression
model, we need first to find a better fuzzy support of the
same fuzzy measure of that Choquet integral regression
model. And we found that the Choquet integral regression
model with R-measure and i-measure based on the new
support, y-support, proposed by us has the better than
before, and the model with R-measure based on y-support is
better than the model with A-measure based on y-support.

In this study, the Choquet integral regression model
with P-measure, A-measure, R-measure and our new fuzzy
measure, L-measure based on the V-support and y-support,
respectively, were considered. For comparing the
performances of the above different Choquet integral
regression models with the multiple regression model and
the ridge regression model, a real data experiment by using
a 5-fold cross-validation mean square error (MSE) is
conducted.

This paper 1s organized as followings: The multiple
linear regression and ridge regression are infroduced in
section 2, two well known fuzzy measure, P-measure,
A-measure and our R-measure are introduced in section 3,
our new measure, L-measure, 1s introduced m section 4,
two kind fuzzy supports: V-support and vy-support are
described in section 5. The Choquet integral regression
model based on fuzzy measures are described in section 6.
Experiment and result are described in section 7, and final
section is for conclusions and future works.

2. The multiple linear regression, ridge regression [1]

Let Y=Xp+¢&, &~ N(Q,O'ZIH) be a multiple linear

model, é’:(X X )%X T be the estimated regression
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coefficient vector, and éfk =(XX +k ' XT be the

estimated ridge regression coefficient vector, Kenard and
Baldwin [1] suggested
né’

f

k=" (1)

b

Iy

3.  Fuzzy measures

The well known fuzzy measures, P-measure proposed
by Zadah in 1978, and the A-measure proposed by Sugeno
in 1974, are concise introduced as follows.

3.1. Fuzzy measures [9], [10], [11]

A fuzzy measure p on a fimite set X 1s a set function
4#4:2% > [0.1] satistying the following axioms:
(1) #(¢)=0, (X )=1(boundary conditions) 2)
(i) 4c B= u(A)< u(B)(monotonicity) (3)

3.2. Singleton measures [4], [5], [6]

A singleton measure of a fuzzy measure 4 on a
finite set X is a function s:X —[0,1] satisfying:
S(x):y({x}),xe)( (4)

s(x) is called the density of singleton x.

33. P-measure [12]

For given singleton measures s, a P-measure, g.,1s4a
fuzzy measure on a finite set X, satisfying:

VY o=t (A):rggqxs(x):rggqxgp ({x}) (3
3.4. J-measure [10], [11]

For given singleton measures s, a A-measure, g,.1sa
fuzzy measure on a finite set X, satisfying:
Q) 4,Be2”, ANB=¢. AUB= X

=g, (4UB)=g,(4)+g,(B)+4ig,(4)g,(B) (©)

(ii) i[[lJrﬁs(xl )]:ﬁ,4r1>0,5(xj):g/1 ({x}}) (N

Note that once the singleton measure is known, we can
obtain the values of A uniquely by using the previous
polynomial equation. In other words, h-measure has a
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unique solution without closed form.
3.5. R-measure [4]

For given singleton measure s, a R-measure, g5.is a

fuzzy measure on a finite set X,

X| = n, satisfying;

() Re[0,=) ()
() D sx)=> ga({x})=1 ©)

(i) "Ac X, n—|4+(4-DR>0
(4 -DRY s(x)

= g () =max| s(x) |+ zed 1
e e R]

—max[s(x) ]|

(10)
[Property |
(i) R-measure has infinitely many solutions with closed
form.
(i) When R=0, the R-measure is just a P-measure with
closed form.

{(u1) g 1isan increasing function of R.

4. L-measure [6]

Liu, Hsiang-Chuan et al get the regular value in the
most right end of the definition of R-measure, who replace
dynamic value, propose it obviously for being sensitive
“L-measure”.

For given singleton measure s, a L-measure, g;.isa

fuzzy measure on a finite set X,

X| = n, satisfying;

(1) LE[O,oo) (11
i) Y s0)=3 g ({x})=1 (12)

(i) "Ac X, n—|A4|+(4-DL>0

(4 DL 5(x
3gL(A):I?SE[S(x)]Jr|:n7|A|+(‘:j|qil)L} lirgleaf[s(xﬂ}
(13)

[Property |

(1) L-measure has infinitely many solutions with closed
form.

(i) When L=0, the L-measure is just a P-measure with
closed form.

(1) g, 1san increasing function of L.

{(iv) When the decision coefficient value of L-measure is the

same as this of R-measure, the number of measure values
for any incident of L-measure always is more than
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R-measure.
5. Fuzzy supports

For given singleton measures s of a fuzzy measure p
on a finite set X, if Zs(x) =1, then s is called a fuzzy

xeX
support measure of p, or a fuzzy support of , or a support
of p. Two kinds of fuzzy supports are introduced as below.

51. V-support [7], [8]

Let p be a fuzzy measure on a finite set,
X={x.x...x,} be the set of n

]‘1(3%.),)‘2 (ch),...,fl\,(xJr ),jzl,2,...,n be the evaluating

scores of subject 7 for singleton x,, satisfying:

courses,

0< fx)<Li=l2..N,j=12..n (14)
If V(xj)zw, j=12..n, (15)
PRAUCY)
=1
1 1 < i
where I/;M(f(xj)):NZ{ﬁ(xj)NZﬁ(xj)] {(16)
i=1 =1
satisfying OSV(xJ)il and ZH:V(xJ):l (17
J=1
then  the function VX —[0]] satisfying

#({x})=F(x). vxeX is a fuzzy support of y, called
V-support of p.

52. v- support [7], [8]

Tet u be a fuzzy measure on a finite set
X ={x.x...x,}, » be global response of subject i
and f; (x J,) be the evaluation of subject i for singleton

x;, satisfying:

O flfoms Vel o= 20, L, =12 (18)
It y(x)= nlw(f(xj)) eI (19)
Z[l+r(f(xk)ﬂ
k=1

where r( f (xj)):S;;; (20)
5 ;},Z[y —;,Zyz] @)
ng:% n ﬁ(xj)%zﬁ(xj)] 22)

kB ) F )
(23)

satisfying Oiy(xj)gl and Zn:)/(xj)zl (24)

j=1

then the function »:X —[0,1] satisfying y({x}) =y(x),
vxe X isafuzzy support of , called y-support of .

6. Choquet integral regression models
6.1. Choquet integral [4], [11], [12]

Let u be a fuzzy measure on a finite set X. The
Choquet integral of f,:X — R, with respect to p for

individual i is denoted by

I

.[Cﬁd’u:Z[ff (x(f))iff(x(rl)ﬂ#(A(ij)) A=12..N

=1
(25)
where ﬁ(x(o)):o . ﬁ(x(j)) indicates that the indices

have been permuted so that

0= i) < A xi) << £ (5n)
A = H 1)

(26)
@7

6.2. Choquet integral regression models [2], [3], [4],
151, [6], [7], [8]

Let 3,,¥,....¥, be global evaluations of N objects

and fl(xj),fz(xj-),...,fN(xj),j:1,2,...,n , be their
evaluations of xj,where X >R, i=12,. N,

Let L be a fuzzy measure, o, fe R,
yl-:och/f)’jCﬁa’g#ﬂeI : el-~N(0,O'2) i 12 Ly, IV
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(28)
(@.8)- argrg};;{% (7. 5] cfxdgy)z} (29)

i=1
then ﬁiz&+ﬁjj§dg#,i:1,2,...,N is called the

Choquet integral regression equation of p, where

b=8,578
1 < 21 -
a== 25 b 2 [ hds, (30)
Zl{yi —;IZEJ@MM 507 B, }
Sty == - N-1 )
1 < i
Z{j‘fzdgw - | s, ]
S = vl (31)

7.  Experiment and result

A real data set with 72 samples from a junior high
school in Taiwan including the independent variables,
examination scores of four courses, and the dependent
variable, the score of the Basic Competence Test of junior
high school listed in Table 2 is applied to evaluate the
performances of three Choquet integral regression models
with P-measure, A-measure, R-measure based and
L-measure on V-support, and y-support respectively, a ridge
regression model, and a multiple linear regression model by
using 5-fold cross validation method to compute the mean
square error (MSE) of the dependent variable. The
formulas of MSE is

1 < .
MSE:Eg(yi_yj)z (32)

For any fuzzy measure, pl-measures, once the fuzzy
support of the p-measure is given, all event measures of u
can be found, and then, the Choquet integral based on p and
the Choquet integral regression equation based on p can
also be found.

The singleton measures, V-support and y-support of
the P-measure, A-measure, and R-measure can be obtained
by using the formulas {15) and (19}, respectively.

The experimental results of eight forecasting models
are listed in Table 1. We can find that the Choquet integral
regression model with L-measure outperforms other
forecasting regression models.
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Table 1  MSE of regression models
Regression model 5.fald OV
measure support MSE
v 70.4011
P
¥ 68.9878
Choquet 3 v 61.0440
Integral
Regression Y S
model & v 60.5317
v 56.2746
A% 59,0159
L
¥ 56.2711
Ridge regression 63.1253
Multiple linear regression 69.7094

8. Conclusions and future works

When the sub-tests of a composite test are with
interaction, the performance of the traditional additive scale
method 1s poor. Non-additive fuzzy measures and fuzzy
integral can be applied to improve this situation. In this
study, a real data set from a junior high school including the
independent variables, test scores of four courses with
interaction, and the dependent variable, junior high school
graduates” scores of the Basic Competence Test (BCT) are
applied to evaluate the performances of the Choquet
integral regression model with four well known fuzzy
measures, P-measure, A-measure, R-measure and
L-measure based on two different supports, V-support, and
v-support respectively, the traditional multiple linear
regression model, and the ridge regression model
Experimental result shows that the following situations:

(1) Choquet integral regression model with L-measure based
on y-support has the best performance.

(ii) Based on the same fuzzy support, not only the y-support
but also the V-support, the Choquet integral regression
model with L.- measure 1s better than which with fuzzy
measure, A-measure, P-measure and R-measure.

{(111) The Choquet integral regression model with the same
measure, P-measure, A-measure, R-measure and
L-measure, respectively, the performance of which 1s
derived from the y-support is better than which from the
V-support.
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{(iv) The Choquet integral regression model with A-measure,
R-measure and IL-measure based on V-support and
v-support, respectively, are all better than the ridge
regression and the multiple regression model.

{(v) The Choquet integral regression model with P-measure
1s not a good model.

In future, we will apply the proposed Choquet integral
regression model with the better measure based on the best
fuzzy support, y-support, to develop multiple classifier
system.
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27 59 75 30 32 27 57 68 70 30 75 33
28 53 56 70 63 22 58 71 76 74 78 38
29 56 56 65 61 6 59 72 66 78 72 19
30 52 57 67 62 15
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Abstract:
Logistic regression algorithm and SVM algorithm are two
well-known classification algorithms but when the

multi-collinearity between independent variables occurs in
above two algorithms, their classifying performance will
always be not good. An improved classification algorithm
combining the Choquet integral with respect to the A-measure
based on y-support is proposed by our previous work. In this
paper, we replaced the more sensitive fuzzy measure,
L-measure with the A-measure in above improved
classification algorithm, and we obtained a further improved
algorithm, called Choquet integral logistic regression
algorithm based on L-measure and y-support. For evaluating
the performances of the SVM, logistic regression and the
Choquet integral logistic regression algorithm with y-support
based on P-measure, A-measure and L-measure, respectively, a
real data experiment by using Leave-one-out Cross-Validation
accuracy is conducted. Experimental result shows that our
new algorithm has the best performance.

Keywords:
Fuzzy measure; Choquet integral; A-measure; L-measure;
y-support

1. Introduction

When interactions among independent variables exist
in forecasting and classifying problems, the performances
of the traditional methods, multiple linear regression
algorithms and multiple logistic regression algorithms are
always not good. For forecasting problems, recently, some
Choquet integral regression algorithms based on different
fuzzy measures proposed by our previous works can be
used to improve this situation [1], [2], [3], [4], [5], [6]-
Therefore, in our previous study, we consider that the
proposed Choquet integral regression algorithms may also
be used to improve the performance of classification, and
an improved classification algorithm combining the
Choquet integral with respect to the A-measure based on
y-support is proposed.

978-1-4244-2239-5/08/$25.00 ©2008 IEEE

In this paper, we replaced the more sensitive fuzzy
measure, L-measure with the A-measure in above improved
classification algorithm, and a further improved algorithm,
called Choquet integral logistic regression algorithm based
on L-measure and y-support was obtained. For evaluating
the performances of the logistic regression algorithm, a
well-known classifying algorithm, Support Vector Machine
(SVM), and our new algorithm, Choquet integral logistic
regression algorithm with y-support based on P-measure,
A-measure and L-measure, respectively, a real data
experiment by using a Leave-one-out Cross-Validation
accuracy is conducted.

This paper is organized as followings: the logistic
regression algorithm is introduced in section 2, the SVM
algorithm is brief introduced in section 3, fuzzy measures
including two well-known measures, P-measure, A-measure
and our new measure, L-measure, are described in section 4,
fuzzy support and y-support are described in section 5.
Choquet integral and its regression algorithm are described
in section 6. The new algorithm, Choquet integral logistic
regression algorithm is introduced in section 7, Experiment
and result are described in section 8, and final section is for
conclusions and future works.

2. Logistic regression

For no needing to group the original data, our
previous study derived the logistic regression algorithm as
below by using a pared-down maximal likelihood
estimating based on Bernoulli distribution not the binomial
distribution.

2.1. Logistic regression model
Let (x,,X,.sX,, ¥, ),i=12,..,N be a sample data,
satisfying

x, = (X1, %5, )€ R", y,€{0,1},

=
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Y ~B(Lp),i=12,..,.N (1)
Logistic regression model is denoted as follows
1
P=P(Y =1|x)= ,i=12,.,N
1+exp[—(a+é’§)]
2

where  f'=(a,B,p,,....0,) are parameters vector of

regression coefficients.

2.2. Logistic regression algorithm

We can obtain the likelihood function and log
likelihood function as following equations (3) and (4),
respectively.

L(p19p2""7pN): H pl}’ (l_pi)liyl (3)
i=1,2,.,N
l=log[L(p1,p2,...,pN)]
N
:ZI:yilogp[+(1_yi)(1_10gp[):| (4)
i=l

And we can get

1=1(a, ) =ZN]:[y,- log p, +(1-y,)(1-log p,) |

:—i[log(l+exp[—(“+éi )})+(1—yi)(0(+é')_q )]

Using Newton-Raphson’s iterative algorithm, we can get
the estimated regression coefficients of the multiple logistic
regression model and the estimated multiple logistic
regression equation as follows:

_ 1
B=P(Y=1]x)= M)
1+exp[—(d+é'£)
R I i BT & Tra
« « oo’ dadf,  000B, | | da
B A ¥l ¥ ¥ || oL
B, =B | - 9Boa B>  dcdp, 8@
B, B, A
L" " dk+1 LT 7k T aﬂ
0B0c dB0B  p | LB
(6)

a a
Increment k; until ﬂl - ﬂl <€ @)
ﬂn K+l ﬂn k
ad 1
where — = (1= 8
Jdo ; 1+exp[—(0{+,§'a_ci)] ( )

IS 1
P, _Z; 1 ’

—(1=y)|x.,ji=12,..,
re[arrpra)] T

©)
9%l =_N exp(a+é"§l.) 10
o’ 5 [1+exp(a+é,£i )]z
LI I e ), j=12..n (1)
E)ﬁjz =1 [1+eXp(0’+,§')_cj)]2’ 32,y
ol ol & xg,-eXp(ané'L) g
dadf; ofda 5 [1+exp(0{+§'&-)r o
(12)
R X x, %, exp(a+ fx,) ki
B8 98B, Flirexplarpx)]
(13)

3. Support vector machine (SVM) [7], [8]
Given the training set of instance-labeled pairs
(x,»,),i=12,...,N, where

xeR"ye{l,-1},i=12,..N (14)
The support vector machine (SVM) algorithm (Boser,

Guyon, and Vapnik 1992, Cortes and Vapnik 1995) requires
1,
mn el
subject to y, (Wo(x;)+b)21-&,
£ >0,
where b,ce R,w,¢(x;)e R"
¢:R" > R"
For any testing point x, € R", y, € {1,—1} , we can make

an assignment according to the following formula.

(15)
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f(x)=sign[ wo(x)+b-(1-¢)]
v

4. Fuzzy measures

ify, =+1 (16)

ify,=-1

The well known fuzzy measures, P-measure proposed
by Zadah in 1978, and the A-measure proposed by Sugeno
in 1974, and L-measure proposed by our previous work in
2007 are concisely introduced as follows.

4.1. Fuzzy measures [9], [10], [11]
A fuzzy measure 4 on a finite set X is a set function
w1:2" —[0,1] satisfying the following axioms:

(i) #(¢)=0,u(X)=1 (boundary conditions)
(i) AcB= u(A4)<u(B) (monotonicity)

(17)
(18)

4.2. Singleton measures [3], [4], [S], [6]

A singleton measure of a fuzzy measure 4 on a

finite set X is a function s: X —[0,1] satisfying:

s(x)=u({x}),xe X

s(x) is called the density of singleton x.

(19)

4.3. A -measure [9], [11]

For given singleton measures s, a A -measure, g, is
a fuzzy measure on a finite set X, satisfying:
(i) 4,Be2¥ ANB=¢, AUB= X

= gl(AUB):g}L (A)+g}L (B)+/7,g;b(A)g}L (B) (20)

(ii) lj[l+ls(xi)]=/1+l>O,s(x,.)=gi({x,.}) (1)

Note that once the singleton measure is known, we can
obtain the values of A uniquely by using the previous
polynomial equation.

4.4. P-measure [10]

For given singleton measures s, a P-measure, gp,isa
fuzzy measure on a finite set X, satisfying:

VAer:>gP(A):m%xs(x):mehng({x}) (22)

4.5. L-measure [5]

For given singleton measure s, a L-measure, g, , is a
fuzzy measure on a finite set X, |X | = n, satisfying:
(i) Le[0,)

(i) Y s = g, ({x})=1

xe X xe X
(i) "4 X,n—|d|+(4-DL>0
(4-DLY s(x)

= g,(4)=max| s(x) |+ xe 4 1
N PRV T

(23)
24

—gﬁx[s(x)ﬂ

(25)
[Property]
(1) L-measure has infinitely many solutions with closed
form.
(i) When L=0, the L-measure is just a P-measure with
closed form.
(iii) g, 1is an increasing function of L.

5. Fuzzy supports [6]

For given singleton measures s of a fuzzy measure p on a
finite set X, if Z s (x) =1, then s is called a fuzzy support

xeX
measure of , or a fuzzy support of , or a support of .

5.1. vy-support [6]

Let

X ={x.,x,,...x,}, »; be global evaluation or response of

4 be a fuzzy measure on a finite set,

subject i and fl-(xj) be the evaluation of subject ; for
singleton x;, satisfying

0< fi(x;)<Li=L2,...N,j=12,..n

If (x;)= n1+r(f(xj)) , j=12,n (26)
;[Hr(f(xk))]
where r( f(xj))= S 27)
5,5,
, 1 1Y
N :F,:l J’,_F;yi] (28)
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. 2

s =% 2 [f, (xj)—%lzz“f, (x; )} (29)
R3] S WIN]

a - " (30)

satisfying 0<y(x,)<1 and i}/(xj)=l (31)

Then  the  function y]_)l(—>[0 1] satisfying:

u({x})=»(x), "xe X is a fuzzy support of p, called

y-support of L.
6. Choquet integral regression models
6.1. Choquet integral [12]

Let p be a fuzzy measure on a finite set X. The
Choquet integral of f;: X — R, with respect to p for

_1))}ﬂ(A(ij)) i=12,.,N

(32)
Where fi(x(o)):0, fi(x(j)) indicates that the indices

individual i is denoted by

jcﬁd“:g[ﬁ(’cm)‘ﬁ(%

have been permuted so that

0=/, (x) < (5 ) <= ()

A =150 Tw o
6.2. Choquet integral regression algorithms [1],
121, 131 [4], [SI, [6]
Let »,,¥,,...,yy be global evaluations of N objects
and fl(xj)afz(x) fN( ) i=1,2,.. , be

evaluations of X;, where f,: X >R, ,i=12,..N

(33)

(34

their

Let p be a fuzzy measure, o, € R,
=a+ﬂJCﬁdg#+ei e ~N(0.0%) L i=12..N
(35)

(@) = arg min [ﬁ(y[—a—ﬂjcﬁdg,,)z} (36)

i=1
then j/,.:d+,3J.fidg#,i=1,2,...,N is called the

Choquet integral regression equation of p based on

y-support, where
B=S8,1Sy,

o=y 3 b2 e
ﬁ:{ ~-Zy,“jfdg *—Zbg'[fkdgﬂl

i=1
Sy = N-1

(37

(3%

7. Choquet integral logistic regression algorithm

Let y,,¥,,...,yy be global evaluations of N objects,
fl(x~),f2(x~),...,fN(xj),jzl,Z,...,n , be

evaluations of X, where f,: X —>R, ,i=L2,..,

their

N, u
be a fuzzy measure based on y- support.

:d+,[fj-fidg#, i=L12,.,N , be the Choquet
integral regression equation of 4 based on y- support.
Furthermore, let (3,,7,),i=12,..,N be a sample data,
satisfying

7, eR y,e{0,1},Y" ~B(L,p,), i=1,2,..,.N (39)

The Choquet integral logistic regression model is
denoted as follows

1
1+exp[—(5+9¢7,) ]

where 0,9 are parameters of two regression coefficients,

F=P(Y,=1|53)= (40)

and the Choquet integral logistic regression algorithm is
given as below

P=P(Y,=1]7,)= (41)
1+exp[ +¢y J
o1 | al
g [ & 2
6: _ é: B d0° 9M¢ F (42)
ol o), | o | oL
0@S 09’ . 99 |,
Increment k; until R - . lll<ée (43)
¢ k+1 ¢ k
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where — =

8 [1+exp[ 5+¢)7i)}_(1_y[)} 44

Lﬁxp[ o] (1—%-)}?,- (45)
12__N exp (6 +¢7;) i (46)
05" F1+exp(6+97,)]
FL_ g Fen(d+65) @7)
0" T1+exp(5+95,)]
9 _ 9%l :_N 7, exp(+¢7,) (48)
000¢ 0¢do i=1 [1+exp(5+¢)~’fﬂ2

8. Experiment and result

A female breast cancer data set was downloaded from
website, ftp:/ftp.cs.wisc.edu/math-prog/cpo-dataset/machin
e-learn/cancer/WDBC/

The sample included 569 females; there are two
classes of tumors, 357 benign tumors and 212 malignant
tumors, and 30 characteristics of tumors.

The above real data is applied to evaluate the
performances of the multiple logistic regression algorithm,
The SVM algorithm, and three Choquet integral logistic
regression algorithms with y-support based on P-measure,
A-measure and L-measure, respectively, by using
Leave-one-out Cross-Validation method to compute the
accuracies of the response category variable.

Since for any fuzzy measures, once a fuzzy support of
the fuzzy measure is selected, all of the event measures of
this fuzzy measure can be found, and then, the Choquet
integral based on this fuzzy measure and the Choquet
integral regression equation based on this fuzzy measure can
also be found.

For three fuzzy measures, P-measure, A-measure and
L-measure, suppose the same fuzzy support, y-support, is
first selected. We can obtain the y-support of the 30 futures
of the Breast Cancer Data by using the equations (25)~(30)
as Table 1

The performances of the Choquet integral logistic
regression algorithms with y-support based on P-measure
A-measure and L-measure, respectively, a multiple logistic
regression algorithm and a SVM algorithm are compared
by using Leave-one-out Cross-Validation accuracy. The
experimental results of five classification regression
algorithms are listed in Table 2. We can find that the
Choquet integral logistic regression algorithm with
v-support based on L-measure outperforms other

classification algorithms, and the multiple logistic

regression algorithm is better than the SVM algorithm.

Table 1 y-support of the thirty futures
No 4 No 4 No 4
-support -support -support
1 0.0181 11 0.0260 | 21 0.0154
2 0.0393 12 0.0624 | 22 0.0375
3 0.0171 13 0.0269 | 23 0.0146
4 0.0194 14 | 0.0320 | 24 | 0.0178
5 0.0396 15 0.0661 25 0.0367
6 0.0237 16 0.0411 26 | 0.0243
7 0.0180 17 0.0469 | 27 0.0179
8 0.0141 18 0.0345 28 0.0125
9 0.0421 19 0.0630 | 29 0.0386
10 | 0.0616 | 20 | 0.0526 30 | 0.0402

Table 2 Leave-one-out CV accuracy of six Classification
algorithms

Classification algorithm N.O' (.)f Accuracy
mistrial
Choqupt 1n§egra1 logistic 60 0.8946
regression with P-measure
SVM 52 0.9086
Logistic Regression 47 0.9174
Choun:t 1nt§gral logistic 45 0.9209
regression with A-measure
Choqget 1nt.egra1 logistic 36 09367
regression with L -measure

9. Conclusions and future works

In classification problem, two well-known classification
algorithms, multiple logistic regression algorithm and SVM
algorithm are popular used. However, when the
multicollinearity between independent variables occurs in
above two algorithms, the performance of these two
methods will always be not good. An enhanced
classification algorithm combining the Choquet integral
with respect to the A-measure based on y-support is
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proposed by our previous work. In this research, we took
the place of the more sensitive fuzzy measure, L-measure
with the A-measure in the above enhanced classification
algorithm, and a further enhanced algorithm, called
Choquet integral logistic regression algorithm based on
L-measure and y-support was obtained. A real data
experiment by using Leave-one-out Cross-Validation
accuracy is conducted for evaluating the performances of
the SVM, logistic regression and the Choquet integral
logistic regression algorithm with y-support based on
P-measure, A-measure and L-measure, respectively. And
experimental result shows that our new algorithm, Choquet
integral logistic regression algorithm based on L-measure
and y-support, has the best performance. The performance
of multiple logistic regression algorithm is better than that
of SVM algorithm.

In the future we will apply the proposed Choquet
integral regression model with the better measure based on
the best fuzzy support, y-support, to develop multiple
classifier system.
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Abstract:

Two well known fuzzy partition clustering algorithms,
FCM and FPCM are based on Euclidean distance function,
which can only be used to detect spherical structural clusters.
GK clustering algorithm and GG clustering algorithm, were
developed to detect non-spherical structural clusters, but both
of them fail to consider the relationships between cluster
centers in the objective function, needing additional prior
information.. In our previous studies, we developed two
improved algorithms, FCM-M and FPCM-M, based on
unsupervised Mahalanobis distance without any additional
prior information. And FPCM-M is better than FCM-M, since
the former has the more information about the typicalities
than the later. In this paper, an improved new unsupervised
algorithm, “fuzzy possibility c-mean based on complete
Mahalanobis distance without any prior information
(FPCM-CM)”, is proposed. In our new algorithm, not only the
local covariance matrix of each cluster but also the overall
covariance matrix was considered. It can get more information
and higher accuracy by considering the additional overall
covariance matrix than FPCM-M. A real data set was applied
to prove that the performance of the FPCM-CM algorithm is
better than those of the traditional FCM and FPCM algorithm
and our previous FCM-M.

Keywords:

FCM; CM; FCM-M; PCM-M; FPCM-CM
1. Introduction
The clustering analysis plays an important role in data
analysis and interpretation. It groups the data into classes or
clusters so that the data objects within a cluster have high
similarity in comparison to one another, but are very
dissimilar to those data objects in other clusters.

Fuzzy partition clustering is a branch in cluster analysis,
it is widely used in pattern recognition field. The well

known fuzzy Possibility partition clustering algorithms,
PCM [4], and FPCM [6] are proposed to improve the

978-1-4244-2239-5/08/$25.00 ©2008 IEEE
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problems of outlier and noise in FCM [1], but the above
three algorithms were based on Euclidean distance function,
which can only be used to detect spherical structural
clusters.

Extending Euclidean distance to Mahalanobis distance,
Gustafson-Kessel (GK) clustering algorithm [2] and
Gath-Geva (GG) clustering algorithm [3], are developed to
detect non-spherical structural clusters, but both of them
fail to consider the relationships between cluster centers in
the objective function, needing additional prior information.
In our previous studies, we developed two improved
algorithms, FCM-M and FPCM-M , based on unsupervised
Mabhalanobis distance without any additional prior
information, and FPCM-M is better than FCM-M, since the
former has the more information about the typicalities than
the later.

In this paper, an improved new unsupervised algorithm,
“fuzzy possibility c-mean based on complete Mahalanobis
distance without any prior information (FPCM-CM)”, is
proposed. In our new algorithm, not only the local
covariance matrix of each cluster but also the overall
covariance matrix were considered. It can get more
information and higher accuracy by considering the
additional overall covariance matrix than FPCM-M.

A real data set was applied to prove that the
performance of the FPCM-CM algorithm is better than
those of the traditional FCM and FPCM algorithm and our
previous FCM-M.

This paper is organized as followings: Fuzzy c-mean
algorithm is introduced in section 2, Fuzzy possibility
c-mean algorithm is introduced in section 3, FCM-M
algorithm is introduced in section 4. FPCM-M algorithm
is described in section 5. FPCM-CM algorithm is described
in section 6, Experiment and result are described in section
7 and final section is for conclusions and future works.
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2.  Fuzzy c-Mean Algorithm [1, 5]

The objective function used in FCM is given by
Equation (1)

Jiew (U4, X )= Z. /Z] uld: = Z /Z. ul s - af 1
U, € [0,1] is the membership degree of data object
X, in cluster ¢, and it satisfies the following constraint
given by Equation (2-2)
Suy=1,%=12,.n

i=1

2

C is the number of clusters, m is the fuzzifier,
m>1,which controls the fuzziness of the method. They are
both parameters and need to be specified before running the

algorithm. 47 = | E/_%HZ is the square Euclidean distance
between data object x; to centerg, .

Minimizing objective function (1) with constraint (2) ,
the updating function for 4 and ; is obtained as (3) and

4,

=

‘ /uij =
a, == i=1,2,...,c
&TTE . G)
Hj
=1
L !
, ol
u | ] 2] (n-a) @

3. Fuzzy Possibility C-Mean Algorithm [6]

The improved fuzzy partition -clustering algorithms
“Fuzzy Possibility C-Mean (FPCM)” is given by Equation
®)

c

> n 2
Jrpen (U5T>A’X): (/‘z7+t5)“ij_%“
=1 j=l
(%)
constraints: membership
,ltiJ.:l,vj:l,Z,...,n’ (6)

i=1

51

n v.
typicality ;tij =1,"=12,.,c %)

Minimizing objective function (5) with constraint (6)
and (7) , the updating function for g .4 andy is

obtained as (8) , (9) and (10)

Zn: (ﬂij‘z T ttf‘ )L/
= J=1

a, - , i =1,2,...,c
2 (w1
j=1
(®)
4, = N (5/_@:):(’11_@')m ’ )
"y -a)(x-a)
i=L2,.,c,j=12,.,n
1 —1
[ s-af(oa) |
t. =
v ;[(&&)(&&) (10)
121929 ,C ]:1929 s

4. FCM-M Algorithm [7]

For improving the above problems of GK algorithm,
based on unsupervised Mahalanobis distance without any
additional prior information, we added the class covariance
matrix and a regulating factor of covariance matrix,

-1
—1In “"Ei

, to each class in objective function (1). The

improved new algorithm, “Fuzzy C-Mean based on
Mahalanobis distance (FCM-M)”, is obtained, and the
objective function of FCM-M is given as (11) and
constraints (12);

J:M(U,AZX)=§§z§’[(zs-@)’¥‘(w)—m|¥1|} (1)
(12)

Minimizing objective function (11) with constraint
(12) , the updating function for 4 ,u, and %, is obtained

as (13), (14) and (15)

Constrain Zﬂ- =1,Y=12,..n

i=1
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n ! n -
%{;ﬂng} LMEE IS (x-a) = (x,—a) -z [~ 0
i=L2,..,c e (zj—gs)’zfl(f_fj—gs)_hl‘zf‘
- = LT
|5 =) 2z -a) - t (a5 saq - |
ij ’ —
o (J_Q,— Qg) . (Ej—ﬁv)—m‘xl‘ T4 (36 )% (- -nfx; | @1
(14)
\ , ul+ i) (x, - a)(x, - a)
2oy (x-a)(x,-a) s, = ’=1( : ,,)(xj ) 22)
2, == T (13) Zl(ﬂé’»’ +17)
,U,-j Jj=

6. FPCM-CM Algorithm
5. FPCM-M Algorithm [8]
In this paper, for improving the FPCM-M algorithm, ,
For improving the FPCM algorithm, we added the class we added a overall scatter matrix, ~(4-a) % (¢-q)> 1N

covariance matrix and a regulating factor of covariance objective function (16). The improved new algorithm,

, to each class in objective function (5). “Fuzzy Possibility C-Mean based on Complete
The improved new algorithm, “Fuzzy Possibility C-Mean Mahalanobis distance (FPCM-CM)”, is obtained, and the
based on Mahalanobis distance (FPCM-M)”, is obtained, objective func'f1on of FCM-M is given as (23) and
and the objective function of FCM-M is given as (16) and ~ constraints (24);

constraints (17);

matrix, - ‘+Z;1

¢ n , J;}(IL,,GL,(U,T,A,E,X): (23)
m _ n ) _ 1 _ _ 1 - , ,
mewa(UsT’AsZX)—g:;(ﬂ; +’if)[(l‘f a) I'(x,-a) ]anl ;;(Mﬂj)[(zﬁ&)ZT‘(L*Z)*IH\ZZ‘\*(E*Z)27‘(2*@)}
(16) constraints: menbership
constraints » u, =1, j=12,..,n (17) Y 1 Vi_
Z}: ' Z#’ 1, =1,2,0n,
Z; t; =1, Yi=1,2,..,c (18) typicality i t, =1, Yi=1,2,..,c (24)
j= j=1
Minimizing objective function (16) with constraint ypare '
(17) , (18) the updating function for 4 , g, , f,and X, 1 & 1 ,
is obtained as (19), (20), (21) and (22) &= ot Z, =;Zl(£f ~4,)(x,-4a) (25)
J= J=
B h Itipl hod
o _ o _ Using the Lagrange multiplier method, to minimize
_ m 1 m 1
4 = |:z H; Zi j| Z:uy 2;‘ X (19) the objective function (23) with constraints (24) respect to
J= 7= parameters g, , 4, t;, X, , we can obtain the updating
i=12,..,c function as (26), (27), (28),and(29),
a=F" {Z(ﬂf?’ ) Ta -% ] (26)
=1
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T (x-a) = (x,-a)-If5|~(¢,-a) T (¢, -q)
(27)
R
. =i
f = (l‘j‘%)xl(%j-@)ﬂi 1\-(59—91)2? (4—a)
N B (x-a)%(x-a)-n% ' Hg-a) % (4-a)
(28)
where
a :l X,z _li(x. a)(x —a)’
Y nj:1—j ' ns L TG N\E T Y
> [up 4] (x,-a)(x, - a)
T, =2 i
L +17 ] (29)

The new fuzzy clustering algorithm (FPCM-CM) can
be summarized in the following steps:

Step 1: Determining the number of cluster; c, let
m=2, § =3 , Given converging error £ >0 (such
as & = 0.001) choose the result membership matrix of
FPCM-CM algorithm as the initial one and the normalized
result typicality matrix of FPCM-CM algorithm as the
initial one respectively;

let 4% i=12.,c be the result centers of k-mean

. _ (0) .
algorithm, and dl.j =X, —g be distances between

data object xto centera”.
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Step 3: Increment k; until max

1<i<c

2® -&(H)H< .

=i

7. Experiment and Results

A real data set of 968 students from elementary
schools was selected. These data included the 10
mathematics questions.

At first, the main factors of 968 data were calculated
by using factor analysis. Next, according to the main factors,
the samples were assigned to 4 clusters based on the
clustering analysis using the k-mean clustering of SPSS for
Windows 10.0. The results were shown in Table 1.

Table 1 The characteristics of 4 clusters
1 average distance of the
Cluster “*™'°* " Grade points from center of
size
cluster
1 220 2 2.082132
2 435 4 1.433158
3 275 3 2.032674
4 56 1 2.356698

From Cluster 1, 15 samples randomly were selected,
15 from cluster 2, 15 from cluster 3, and 5 from cluster 4.

The combination the method of choosing the initial
membership with distinct computing distance was shown in
Table 2.

Table 2 Sample size of each group

Group Number of Samples
1 15
2 15
3 15
4 5

The classification accuracies of testing samples were
shown in Table 3.

From the data of Table 3, we found that the
FPCM-CM algorithm could obtain the best results, and our
previous algorithms, FPCM-M and FPCM-M are better
than two well known algorithms, FPCM and FCM.

Table 3 Classification accuracies of testing samples.

Algorithms Accuracies (%)
FCM 32
FPCM 30
FCM-M 56

54

FPCM-M 58
FPCM-CM 62

8. Conclusions

Two well known fuzzy partition clustering algorithms,
FCM and FPCM are based on Euclidean distance function,
which can only be used to detect spherical structural
clusters. GK clustering algorithm and GG clustering
algorithm, were developed to detect non-spherical structural
clusters, but fail to consider the relationships between
cluster centers in the objective function, needing additional
prior information.. In our previous studies, we developed
two improved algorithms, FCM-M and FPCM-M , based on
unsupervised Mahalanobis distance without any additional
prior information. And FPCM-M is better than FCM-M,
since the former has the more information about the
typicalities than the later. In this paper, an improved new
unsupervised algorithm, “fuzzy possibility c-mean based on
complete Mahalanobis distance without any prior
information (FPCM-CM)”, is proposed. In our new
algorithm, not only the local covariance matrix of each
clusters but also the overall covariance matrix were
considered. It can get more information and higher
accuracy by considering the additional overall covariance
matrix than FPCM-M. A real data set was applied to prove
that the performance of the FPCM-CM algorithm is better
than those of the traditional FCM and FPCM algorithm and
our previous FCM-M, and our previous algorithms,
FPCM-M and FPCM-M are better than two well known
algorithms, FPCM and FCM.

In future, we will consider improve the initial value
problem by using the swarm algorithm.
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Abstract:

The support vector machine (SVM) classifier is a popular
and appealing classifier .It could be improved by taking some
transformation about the original data before classification
even sometimes its performance is not good,. In our previous
paper, two transformations, NWFE-Transformation and
Liu-Transformation are considered. The results showed that
the SVM with our Liu-Transformation algorithm has the best
performance.

In this paper, we considered the further improved SVM
algorithm based on not only the Liu- transformation but also
the well known normalization, For evaluating the
performances of the SVM without any transformation and
normalization, the SVM with NWFE-Transformation and
Liu-Transformation, respectively, the SVM with one of above
two transformations and the well known normalization, a real
data experiment by using S5-fold and Leave-one-out
Cross-Validation accuracy is conducted. Experimental result
shows that the SVM with the proposed Liu-Transformation
algorithm and the well known normalization algorithm has
the best performance.

Keywords:
SVM; NWFE-Transformation; Liu-Transformation

1. Introduction

The support vector machine (SVM) classifier is a
popular and appealing classifier [1], [2], [3], [4]. Due to
sometimes its performance is not good, it can be improved
by taking some transformation about the original data
before classification, two transformations can be
considered, one is NWFE-Transformation proposed by B.
C. Kuo & D. A. Landgrebe in 2001 [5], [6], the other is
Liu-Transformation proposed by our previous work in 2008
[7], [8]. The results of our previous paper [8] showed that
the SVM with our Liu-Transformation algorithm has the
best performance. In this paper, we considered the further
improved SVM algorithm based on not only the Liu-
transformation but also the well known normalization, For

978-1-4244-2239-5/08/$25.00 ©2008 IEEE

evaluating the performances of the SVM without any

transformation and normalization, the SVM with
NWFE-Transformation and Liu-Transformation,
respectively, the SVM with one of above two

transformations and the well known normalization, a real
data experiment by using 5-fold and Leave-one-out
Cross-Validation accuracy is conducted. Experimental
result shows that the SVM with the proposed
Liu-Transformation algorithm and the well known
normalization algorithm has the best performance.

For evaluating the performances of the SVM without
any transformation and normalization, the SVM with
NWFE-Transformation and Liu-Transformation,
respectively, the SVM with one of above two
transformations and the well known normalization, a real
data experiment by using S5-fold and Leave-one-out
Cross-Validation accuracy is conducted. Experimental
result shows that the SVM with the proposed
Liu-Transformation algorithm and the well known
normalization algorithm has the best performance

This paper is organized as followings: support vector

machine classifier is introduced in section 2,
NWFE-Transformation 1is introduced in section 3,
Liu-Transformation is introduced in section 4.
Normalization algorithm is described in section 5.

Experiment and result are described in section 6 and final
section is for conclusions and future works.

2. Support vector machine (SVM) [1], [2], [3], [4]

Given the training set of instance-labeled pairs
(x,y,).i=12,..,N, where
xeR",ye{l,-1},i=12,..,N (1)

The support vector machine (SVM) algorithm (Boser,
Guyon, and Vapnik 1992, Cortes and Vapnik 1995) requires
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in
,b,&

8
| =

N
ww+e) &
i=1

subject to y[(v_v'¢(§i)+b)21—.fi,
& 20, )
where b,ce R,v_v,(/ﬁ(ici)e R"

¢:R" > R"

1=

For any testing point x, € R",y,€{L—1}, we can
make an assignment according to the following formula:
f@)=wo(x)+b-(1-¢)
+1, if f(x)=20 3)
Yi = {_1’

if f(x)<0
3. NWFE-Transformation [5], [6]

The main ideas of nonparametric weighted feature
extraction transformation (NWFE-Transformation)(Kuo, B.
C. and Landgrebe, 2002, 2004) are putting different
weights on every sample to compute the “local means” and
defining new nonparametric weighted between-class and
within-class scatter matrices to get more features.

The nonparametric weighted between-class scatter

matrix, S, and the nonparametric weighted within-class

scatter matrix, S , of NWFE-Transformation are defined

as
c ¢ n; ﬂ/(i,j) i ,-
SETbL S0 L
(8] = (-0, ()
c n /I(i,t) l ,-
A :;p,kZI ’k%- B’E’?][sz]r .
CUREEED)
where M,(Lfi))= - w) g ©)
=1
A a1, (ﬁ(l)))_l (7)
i . -1
> d()_c,(’),Mj (Lm ))
W) = d 115[)’51(”)_1 ®)

is the prior probability

is the training sample size of class i; Lfi)

C is the number of classes, p

i
ofclass i, n;

is the sample vector k with dimension d in class i;

M, ()_c,ii)) is the nonparametric weighted local mean of

Lfi) inclass j; d (5, Z) is the Euclidean distance from
Xtoy.

The goal of NWFE-transformation is to find a linear
transformation Ae R””, p<d , which maximizes the
between-class scatter and minimizes the within-class scatter.
The columns of A are the optimal features by optimizing
the following criterion

A =argmaxtr [(ATS‘]‘,VWA)f1 ATSIfVWA] )

This maximizing is equivalent to find the eigen-pairs

(A.v),i=12,...d, A, 24, >..2 1, for the generalized
eigenvalue problem

S, v=A8"v (10)

4. Liu-Transformation [7]

The main ideas of Liu-transformation proposed by our
previous work (Hsiang-Chuan Liu, 2008) [7] are putting
different weights on every sample to compute the
“weighted means” by referring the distances of the points
from the ‘outmost points’ and defining new
nonparametric weighted between-class and within-class
scatter matrices to get more features.

Let X, be the data set with n sample points and ¢

C
classes, n; be size of class i, satisfyingn:Zni; D;

i=1

be proportion of class i, satisfying p, =—; 5,&’)6 R?
n

be sample k in class i; m; =—Z§,£l) be the original
e

mean of class i; gﬁj ) be the outmost point of class j,

satisfying

(11)

() = 2(..()
x,/) =arg max d(x7,m.
= gk:l,z ..... n Z (‘k —’)
J
distances of the sample points from the outmost point of
class j satisfying

m; be weighted mean of class j by referring the
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u,(j)x(f)
my == (12
uﬁ”
k=1
where u,(f)—lrlnzax dist® ( (]) ()) dist® ( () g*(j))

(13)

The nonparametric weighted between-class scatter
matrix, S, and the nonparametric weighted within-class

scatter matrix, S, of Liu-Transformation are defined as

w2

C n; ﬂ I )
st =30 3 S A () -m) a9
i=1 i#j=1 k=1 i
where
B d’”z( ) -dist (of) ) )
kT A
2 [l_llnzax ‘dlstz( (1),}11;)—611'5‘;2 (IJ({I)»@; ):|
(15)
c n; (i) . . K
S =Sy ) -m) 09

i=l k=1 M

,u,(f) = max dist’
1=1,2,..n;

(. )it () 17)

The goal of Liu-transformation is to find a linear

transformation Ae R™”, p<d , which maximizes the

between-class scatter and minimizes the within-class scatter.

The columns of A are the optimal features by optimizing
the following criterion

A= argmfxzr[(AfsjA)" ATS,,LA} (18)

This maximizing is equivalent to find the eigen-pairs
(4.v,),i=12,...d, A, 24, 2.2, for the generalized

eigenvalue problem
Stv=ASly (19)

5. Normalization algorithm

Given the training set of instance-labeled pairs
(Ei’yi)’izl’z N Let x —(.X x12’x13’ ln) R"

i1°
then the normalization of X, is

p)

_ n e
z —(zl.,l,zl.‘z,zl.ﬁ,...,zi,n)e R" satisfying

z =221 i=12,..,

N,J=12,..n (20)

e2)

- 1 , 1 2
where ¥, =N;xﬁ:si =W§(xz/ _x./)

6. Experiment and result

A wine data set was downloaded from website,
ftp://ftp.ics.uci.edu/pub/machine-learning-databases. ~ The
sample included 178 instances, 3 classes of wine, and 13
features for each instance.

The above real data is applied to evaluate the
performances of the Support Vector Machine (SVM)
algorithm without any transformation, the SVM algorithm
with NWFE-Transformation, the SVM algorithm with
Liu-Transformation, the SVM algorithm with normalization,
the SVM  algorithm  with  normalization and
NWEFE-Transformation, and the SVM algorithm with
normalization and Liu-Transformation by using 5-fold and
Leave-one-out Cross-Validation method to compute the
accuracies of the response category variable.

Table I  Accuracy of six Classification algorithms
Classification 5-fold CV Leave-one-out
algorithm accuracy CV accuracy
SVM 45.763 46.633
SVM_NWFE 93.023 96.305
SVM N 97.740 98.740
SVM_ Liu 99.080 98.773
SVM_N NWFE 100 100
SVM N Liu 100 100
The experimental results of six classification

algorithms are listed in Table 1. For both 5-fold CV and

Leave-one-out CV accuracy, we can find the same

situations as following:

(i) The SVM algorithm with normalization and
Liu-Transformation and the SVM algorithm with
normalization and NWFE-Transformation had the same
performance, better than others.

(i) The SVM algorithm with just one of transformation or
normalization is better than the SVM algorithm without
any transformation and normalization.
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(ii1) The performance of the SVM algorithm without any
transformation and normalization is not always good.

7. Conclusions and future works

The support vector machine (SVM) classifier is a
popular and appealing classifier. Because sometimes its
performance is not good, it could be improved by taking
some transformation about the original data before
classification. Two transformations can be considered, one
is NWFE-Transformation proposed by B. C. Kuo & D. A.
Landgrebe in 2001 [5], [6], the other is Liu-Transformation
proposed by our previous work in 2008 [7], [8]. The results
of our previous paper [8] showed that the SVM with our
Liu-Transformation algorithm has the best performance. In
this paper, we considered the further improved SVM
algorithm based on not only the Liu- transformation but
also the well known normalization.

For evaluating the performances of the SVM without
any transformation and normalization, the SVM with
NWFE-Transformation and Liu-Transformation,
respectively, the SVM with one of above two
transformations and the well known normalization, a real
thyroid data included 178 instances, 3 classes of wine, and
13 features for each instance is conducted.

The above real data is applied to evaluate the
performances of the Support Vector Machine (SVM)
algorithm without any transformation, the SVM algorithm
with NWFE-Transformation, the SVM algorithm with
Liu-Transformation, the SVM algorithm with normalization,
the SVM  algorithm  with  normalization and
NWFE-Transformation, and the SVM algorithm with
normalization and Liu-Transformation by using 5-fold and
Leave-one-out Cross-Validation method to compute the
accuracies of the response category variable.

The experimental results of six classification
algorithms are listed in Table 1. Both 5-fold CV and
Leave-one-out CV accuracy, we can find the same
situations as following;

(i) The SVM algorithm with Liu-Transformation is better
than the SVM algorithm with NWFE-Transformation
had and the SVM algorithm without any transformation.

(i) The SVM algorithm with normalization and
Liu-transformation and the SVM algorithm with

normalization and NWFE-Transformation are same

better than others.

In future, we will apply our Liu-Transformation with
normalization to improve the performances of other
classifiers.
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Abstract:

In search of good classifier of hosts of influenza A viruses
is an important issue to prevent pandemic flu. The
hemagglutinin protein in the virus genome is the major
molecule that determining the range of hosts. In this paper,
a novel classification algorithm of hemagglutinin proteins
integrating SVM and logistic regression based on 4 kinds of
Hurst exponents for each protein sequence is proposed. This
method not used before is the first one integrating the
physicochemical properties, fractal property, SVM and
logistic regression classifier. For evaluating the performance
of this new algorithm, a real data experiment by using S5-fold
Cross-Validation accuracy is conducted. Experimental result
shows that this new classification algorithm is useful and
batter than SVM and logistic regression, respectively.

Keywords:
Influenza A viruses; Hurst exponent; SVM; Logistic
regression; SVM-Logistic regression

1. Introduction

Influenza A viruses are negative-strand RNA viruses
that infect a wide variety of animals in the nature. The
infection of human may cause significant mortality and
morbidity worldwide [1]. The hemagglutinin (HA) protein
in the virus genome is the major molecule that determining
the range of hosts. The natural reservoir of influenza virus
such as avian flu may emerges in strains infectious to
human by mutation of HA protein and brings pandemic flu,
therefore, in search of good classification algorithm of HA
proteins is an important issue to prevent pandemic flu. In
this paper, a novel classification algorithm of HA
proteins combining Hurst exponents, SVM and logistic
regression is proposed [2], [3], [4], [5]. This method not
used before is the first one integrating the physicochemical
properties, fractal property, support vector machine (SVM)
and logistic regression classifier.

The protein residues were coded according to its

978-1-4244-2239-5/08/$25.00 ©2008 IEEE

physicochemical quantities of acidity, Van der waal volume,
surface area and hydrophobicity in the situation of single
amino acid [6], [7]

First step, the HA sequence data of serotype HS of
influenza A viruses with two classes used in this research
were downloaded from public databases: Influenza
Sequence Database (http://www.flu.lanl.gov). The sample
included 90 HA protein sequences of human infections and
90 HA protein sequences of bird infections.

Second step, to replace each residue of amino acid in
the sequences of the HA proteins with 4 physicochemical
quantities.

Third step, computing the Hurst exponents of each
non-symbolic sequences of the HA proteins, we can
obtained four features of Hurst exponents in each sequences
of the HA protein [2], [6], [7].

Last step, two well known and appealing classifiers,
Support Vector Machine (SVM) and Logistic regression
(LR), and our new hybrid classifier combining SVM and
LR were used to discriminate the correct class of the 180
HA proteins with four features of Hurst exponents.

For evaluating the performance of above three
classifiers, the above HA proteins data experiment by using
5-fold Cross-Validation accuracy is conducted.

This paper is organized as followings: four
physicochemical quantities of 20 amino acids are
introduced in section 2, Hurst exponent is introduced in
section 3, support vector machine classifier is introduced in
section 4, logistic regression is introduced in section 5, the
new hybrid classifier combining SVM and logistic
regression is introduced in section 6, experiment and result
are described in section 7 and final section is for
conclusions and future works.

2. Four physicochemical properties of amino acids

There are four physicochemical quantities of acidity,
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Van der waal volume, surface area and hydrophobicity in
the situation of single amino acid showed as Table 1 [2],

(3]

Table 1. 20 amino acids and its 4 physicochemical
uantities

Van der
Amino Acidity | waal Surface Hy_deh-
acid Volume area obicity
A 7.0 67 115 0.616
C 3.4 86 135 0.680
D 3.9 67 150 0.028
E 4.1 109 190 0.043
F 7.0 135 210 1.000
G 7.0 48 75 0.501
H 6.0 118 195 0.165
1 7.0 124 175 0.943
K 10.5 135 200 0.283
L 7.0 124 170 0.943
M 7.0 124 185 0.738
N 7.0 148 160 0.236
P 7.0 90 145 0.711
Q 7.0 114 180 0.251
R 12.5 167 225 0.000
S 7.0 73 115 0.359
T 7.0 93 140 0.450
\% 7.0 105 155 0.825
\\4 7.0 163 255 0.878
Y 10.5 141 230 0.880

3. Hurst exponent

The Hurst exponent occurs in several areas of applied
mathematics, including fractals and chaos theory, long term
memory processes and spectral analysis [8]. Hurst exponent
estimation has been applied in areas ranging from
biophysics to computer networking. Estimation of the Hurst
exponent was originally developed in hydrology. However,
the modern techniques for estimating the Hurst exponent
comes from fractal mathematics.

Estimating the Hurst exponent for a data set provides a
measure of whether the data is a pure random walk or has
underlying trends.

The Hurst exponent (H) is a statistical measure used to
classify time series. H=0.5 indicates a random series while
H>0.5 indicates a trend reinforcing series. The larger the H
value is, the stronger the trend. Experiments with
backpropagation Neural Networks show that series with
large Hurst exponent can be predicted more accurately than
those with H value close to 0.50. Thus the Hurst exponent

provides a measure for predictability.

Three methods were used most often for the estimation
of the Hurst exponent: the R/S method, the
roughness—length (R-L) method and a variogram. The R/S
method (Hurst et al., 1965) [9] is commonly perceived as
the most suitable for the time series analysis, because it
presents the relationship between irregular (singular)
rescaled ranges, signal value and their local statistical
properties relative to the scale factor.

In this study R/S method is used. R/S method [10]
is based on empirical observations by Hurst and estimates
H are based on the R/S statistic. It indicates (asymptotically)
second-order self-similarity. H is roughly estimated through
the slope of the linear line in a log-log plot, depicting the
R/S statistics over the number of points of the aggregated

series. That is, given a time sequence of observations, W,

define the  Series
w(tr)=Y (w,-w,)1<t<7 )
u=l1
where
TR o ©)
(=
Define
R(7) = m;lx W(t,7) —mriln W(t,7) %
t= t=
and
1& _\2
S@) =, || =2 (w,—w,) (3
(2w
R(7)

In plotting log S(0) againstlog 7 , we expect to get
T

a line whose slope determines the Hurst exponent.
4. Support vector machine (SVM) [11~14]

Given the training set of instance-labeled pairs
(x,,),i=12,..,N, where

xeR"y e{l,-1},i=12,.,N )

The support vector machine (SVM) algorithm (Boser,

Guyon, and Vapnik 1992 [11], Cortes and Vapnik 1995 [12])
requires
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& 20,
where b,ce R,v_v,(/ﬁ(ici)e R"
¢:R" — R"
For any testing point x, € R", y, € {1,—1} , we can make
an assignment according to the following formula.

d(x)=[wo(x)+b-(1-&)]
{+1, ifd(x)20
Y=

ifd(x,)<0
5. Multiple Logistic regression classifier

(10)

(11)

5.1. Multiple logistic regression model [4], [S]

Let(x,,X;.....X, 5, ), i =1,2,..,N be asample data,
satisfying x, =(x,,x,,....,x, )€ R", y,€{0,1},
Y*~B(Lp,),i=12,...N (12)

The multiple logistic regression model is denoted as
follows

1
1+exp|:—(a+é'1ﬂ

P=P(Y,=1|x)= ,i=1,2,.,N

(13)

where f = (o, B, B,..... B,) are parameters vector of

regression coefficients.
5.2. Multiple logistic regression classifier [5]

We can obtain the likelihood function and log
likelihood function as following equations (14) and (15)

L(ppossry)= [ ' (1-p)"" (14)

i=1,2,.N
N

1=10gL(py, pyres Py ) = D[ ¥, log p, +(1-,) (1-log p,) ]
i=1

(15)

And we can get
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l=l(a,,§)=ZN:[y,»10gpi+(1_)’f)(1_l°gpf)}

i=1

:—i[log(l+exp[—(0!+,§')_% )])"‘(1_%)(0""@,%)}

) (16)

Where o€ R, f'=(8,5,,-.B,)e R’

Using Newton-Raphson’s iterative algorithm, we can
get the estimated regression coefficients of the multiple
logistic regression model and the estimated multiple logistic
regression equation as follows:

P=P(Y=1|x)= - (17)
1+exp[—(0?+,§'g)}
I N A N
o o oo’ dadf, 9B, | | da
B, Ji/ 3 9% 9 ol
Bz = :82 - aﬂl Jdo aﬂlz d O@ﬂn aﬂl
B B, 1 1 9 | |9
L k+1 L Jdk " > aﬁ
0B 0 9B0p 9B, |, LoP L
(18)
where
o 1
_=Z |: _(l_yi) (19)

B, T|l+exp (0{+E,L.):|
(20)
0l _ & exp(a+fx) an
do’ T [1+exp(0{+é"§j )]2
9 N x;exp(a+g'§i) .
of; __"=‘ [l+exp(0{+§'§i )]2 TR 2
9%l =a_21=_N xijexp(a+,§'§i) i=12m
3h, e Afreeplargn)]
(23)
L _ o1 _ g nexp(at ) Jk=1,2,m

9,08, - 9B, = [1 + exp(a+ Bx, )]2 7
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o o
A B
Increment k; until . - <& (24)
n g+ ﬂn k
if P=P(Y, =1]x)20.5
Then y,= fﬂ' A( %) (25)
0 if B=P(Y,=1]x,)<0.5

6. SVM-Logistic regression classifier

In this paper, an improved hybrid classifier combining
SVM and logistic regression is proposed here.
First step, using the SVM classifier, we can find the

signed  distance, d(x,) , Dbetween the point
X, =(x,,X,,...,x, ) and the hyperplane in SUM.

Second step, to consider the sample data
(d(x),5),i=12,.,N , using the simple logistic
regression to classify y, .

6.1. Mathematical formulas

Let (X, %0 X, 0, ), i =1,2,...,
satisfying

N  be asample data,
EJ (‘xll’th’ m)e R" y: € {O l} (26)
Using the above support vector machine (SVM)
algorithm, from equation (11), for any pointx, € R",

we can obtain the signed distance as below

d(x)=[wo(x)+b-(1-¢&)] (27)

6.2. Simple logistic regression classifier of the working
sample data

Let the working sample data(d(lc,. ),yl.), i=12,.,N
satisfying d(x,)€ R, y, € {1,0}
Y ~B(Lp),i=12,...N (28)

The simple logistic regression model is denoted as follows

P=P(Y=1d(x))= 1+exp[—(olz+ﬂd(x.))]’izl’z""’N

(29)

Similarly as multiple logistic regression classifier, we

can get log likelihood function, the estimated regression

coefficients of the simple logistic regression model and the
estimated simple logistic regression equation as follows:

1=1(a ) =i[y,. log p, +(1-,)(1-logp)]

i=1

=3 Ttog(1+exp[~{ar+ B (x)) | (13, ()]

i=l

(30)
N 1
P=P(Y. =1|d = 31
(1 l4(x) 1+exp[—(&+ﬁd X )J GD
8_21 9’1 ol
al [a] [9e? dedf | |oa
AL e || e
ofoa 9’ . b |,
where
ad I 1
i 33
Jda ,Z[l-kexp[ (a-i-ﬂd(lcl))] ( yl)] 33
A& 1 e
azlz :_N exp(O{-ﬁ-ﬂd(L)) i (35)
da i=1 [1+exp(0{+ﬁd(5 ))]
2 glleesis)
op =1 [1+exp o+ pd(x,
¥ _ ¥ _ dd(xy )exp(a+ﬂ (x)) 37
dadff  dfda 1:1[1+exp(0!+,3d(§i)ﬂ2
a a
Increment k; until {A} —{B} <E (38)
1 p = = :
Then y, = lflj A(Yl l|d( ))>05 (39)
0 if P=P(Y,=1]d(x))<0.5

7. Experiment and result

The sequence data of serotype HS5 of Influenza A
viruses with two classes used in this research were obtained
from public databases: Influenza Sequence Database
(http://www.flu.lanl.gov). The sample included 90 HA
protein sequences of human infections and 90 HA protein
sequences of bird infections.

The protein residues were coded according to its
physicochemical quantities of acidity, Van der waal volume,
surface area and hydrophobicity in the situation of single
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amino acid as Table 1.

Computing the Hurst exponents of each non-symbolic
sequences of the HA proteins, we can obtain four features
represented as Hurst exponents respectively in each
sequences of the HA protein.

The above real data with four features in terms of
Hurst exponents is applied to evaluate the performances of
the Support Vector Machine (SVM) algorithm, logistic
regression and the proposed classifier combining SVM and
logistic ~ regression  classifier by wusing 5-fold
Cross-Validation method to compute the accuracies of the
response category variable.

The experimental results for Accuracies of above three
classifiers are listed in Table 2. We can find that our new
classification algorithm is useful and batter than SVM and
logistic regression, respectively.

Table 2 Accuracies of three classifiers

Classifier 5-fold CV accuracy
SVM 0.8056
LR 0.8833
SVM-LR 0.9000

8. Conclusions and future works

In search of good classifier of influenza viruses is an
important issue to prevent pandemic flu. In this paper,
a novel classification algorithm of HA proteins integrating
SVM and logistic regression based on 4 kinds of Hurst
exponents for each protein sequence is proposed. This
method not used before is the first one integrating the
physicochemical properties, fractal property, SVM and
logistic  regression classifier. For evaluating the
performance of this new algorithm, a real data experiment
by using 5-fold Cross-Validation accuracy is conducted.
Experimental result shows that this new classification
algorithm is useful and batter than SVM and logistic
regression, respectively.

Our proposed new classifier can be used to classify not
only the data of Influenza A viruses but also the data of
other biological sequences.

In future, we will consider look for some further
improving classification algorithms by using Hurst
exponent and other hybrid Classifiers.
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Abstract

When the multicollinearity within independent
variables occurs in the multiple regression models, its
performance will always be poor. Replacing the above
models with the ridge regression model is the traditional
improved method. In our previous work, we found that,
the Choquet integral regression model with J-measure
based on the new support, y-support, proposed by us has
the best performance than before. In this study, for
finding the further improved model, we replaced two
well known fuzzy measures, P-measure and A-measure
with our new fuzzy measure, R-measure in Choquet

integral regression model with the new support, y-support.

For comparing the Choquet integral regression model
with P-measure, A-measure and R-measure based on two
different fuzzy supports, V-support and y-support,
respectively, the traditional multiple regression model
and the ridge regression model, a real data experiment
by using a 5-fold cross-validation mean square error
(MSE) is conducted. Experimental vesult shows that the
Choquet integral regression model with R-measure based
on y-support has the best performance.

1. Introduction

When interactions among independent variables exist
in forecasting problems, the performance of the multiple
linear regression models is poor. The traditional
improved methods exploited the ridge regression models
[1]. Recently, some Choquet integral regression models
based on different fuzzy measures were used by our
previous works to further improve this situation [2], [3],
[4], [5].

In our previous works [6], we found that if the
Choquet integral regression model based on the same
fuzzy measure is derived from different fuzzy support,
then it may have different performances, in other words,
the better performance of a Choquet integral regression
model is not only derived from a better fuzzy measure but
also first derived from a better fuzzy support. Hence,
before we find the better fuzzy measure of a Choquet
integral regression model, we need first to find a better

978-0-7695-3305-6/08 $25.00 © 2008 IEEE
DOI 10.1109/FSKD.2008.545

645

fuzzy support of the same fuzzy measure of that Choquet
integral regression model. And we found that the
Choquet integral regression model with A-measure based
on the new support, y-support, proposed by us has the
best performance than before.

In this study, the Choquet integral regression model
with two well known fuzzy measures, P-measure and A-
measure and our new fuzzy measure, R-measure based on
the V-support and y-support, respectively, were
considered. For comparing the performances of the above
different Choquet integral regression models with the
multiple regression model and the ridge regression model,
a real data experiment by using a 5-fold cross-validation
mean square error (MSE) is conducted.

This paper is organized as followings: The multiple
linear regression and ridge regression are introduced in
section 2, two well known fuzzy measure, P-measure and
A-measure are introduced in section 3, R-measures are
introduced in section 4, two kind fuzzy supports: V-
support and y-support are described in section 5. The
Choquet integral regression model based on fuzzy
measures are described in section 6. Experiment and
result are described in section 7, and final section is for
conclusions and future works.

2. The multiple linear regression,
regression [1]

ridge

Let Y=Xf+¢, &~ N(Q,a2ln) be a multiple linear
model, é =(XXx )7l X'Y be the estimated regression

coefficient vector, and /_;k = (XX +kI,)" XY be the

estimated ridge regression coefficient vector, Kenard and
Baldwin [1] suggested

~. (M

3. Fuzzy measures

IEEE
computer
psouety



The well known fuzzy measures, P-measure proposed
by Zadah in 1978, and the A-measure proposed by Sugeno
in 1974, are concise introduced as follows.

3.1. Fuzzy measures [7], [8], [9]

A fuzzy measure x on a finite set X is a set function
p:2% —[0,1] satisfying the following axioms:
(i) #(¢)=0, u(X)=1 (boundary conditions)
(i) AcB= u(A4)<u(B) (monotonicity)

2
3)

3.2. Singleton measures [4], [5]

A singleton measure of a fuzzy measure 4 on a finite

set X is a function s: X —[0,1] satisfying:
s(x)=p({x}), xe X

s(x) is called the density of singleton x .

“4)

3.3. P-measure [10]

For given singleton measures s, a P-measure, gp, is a
fuzzy measure on a finite set X, satisfying:
v X _ —
Ae2" =g, (4)= rBixs(x) =maxg, ({x}) %)

3.4. A-measure [8], [9]

For given singleton measures s, a A-measure, g, is a
fuzzy measure on a finite set X, satisfying:
() 4,Be2” ANB=¢, AUB= X

= g, (AUB)=g,(4)+g,(B)+1g;(4)g,(B) (6)
(i) lj[1+/1s(xl.)]=/l+l>O,S(xi)=gl({xi}) ©)

Note that once the singleton measure is known, we can
obtain the values of A uniquely by using the previous
polynomial equation. In other words, A-measure
has a unique solution without closed form.

4. R-measure [4]

For given singleton measure s, a R-measure, g, is a
fuzzy measure on a finite set X, |.X|=n, satisfying:
(i) Re[0,)

(i) Y s(x)= ge({x}) =1

xeX xeX
(i) "A < X,n—|4]+(4]-DR >0

®)
)
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(A4 -DRD s(x)

xed

w4 &)

- Iiaxxl:s(x)ﬂ

= g4 = n};a/lx[s(x):l + [

(10)
[Property]
(1) R-measure has infinitely many solutions with closed
form.

(i) When R=0, the R-measure is just a P-measure with
closed form.
(iii) gz is an increasing function of R.

5. Fuzzy supports

For given singleton measures s of a fuzzy measure p
on a finite set X, if ) s(x)=1, then s is called a fuzzy

xeX
support measure of p, or a fuzzy support of pu, or a
support of p. Two kinds of fuzzy supports are introduced
as below.

5.1. V-support [6]

Let
X = {xl,xz,...,xn}

h (xj),f2 (xj),..‘,fN (xj), j=L12,...,n be the evaluating

scores of subject i for singleton x, satisfying:

p be a fuzzy measure on a finite
be the set of n

set,
courses,

0<f;(xj)<1,i=1,2,...,N,j:1,2,...,n (11)
If V(xj):m,jzl,z...,n (12)
ZVar (f(xk ))
k=1
1< 1 & ’
where Va,.(f(xj)):WZ{J‘;(%)—FZJ‘;(@)} (13)
i=1 i=1
satisfying OSV(xj)Sl and Zn:V(xj)zl (14)
j=1
then  the  function  V:X —[0,1]  satisfying

,u({x}) =V (x), Vxe X is a fuzzy support of y, called
V-support of p.

5.2. y- support [6]

Let p be a fuzzy measure on a finite set
X ={x,x,,...,x,}, ¥; be global response of subject i
and fi(x j) be the evaluation of subject i for singleton

x;, satisfying:



0<fi(x;)<li=12.,N, j=12.n (15
If 7 ()= nl+r(f(x'j)) L =12m, (16)
21 r(f ()]
k=1 va
where 7(f(x;))= SyS (17)
1 RLAR
s 1 IR ’
R0 93 LIHE> 31 1] IS

1< | 1
S 3 e )4 2k
(20)
Satisfying 0<7( )<1 and z ( ) (21)

then the function y: X — [0,1] satisfying z({x})=y(x),
Vx e X is a fuzzy support of p, called y-support of p.

6. Choquet integral regression models

6.1. Choquet integral [4], [9], [10]

Let p be a fuzzy measure on a finite set X. The
Choquet integral of f;: X — R, with respect to p for

individual i is denoted by

[ ctiau :g[ﬁ(’“m)‘ﬁ(x(f-l))}”(A(i«f)

) i=1,2,..,N

(22)

where f(x(o)): 0, fi(x(j)) indicates that the indices

1

have been permuted so that

0= fix ) < i (%)) <= i (x)

4) {"(f)”‘(ﬂl)""’x(n)}

(23)

(24)

6.2. Choquet integral regression models [2], [3],
[4], [SI, [6]
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Let »,»5,....,yy be global evaluations of N objects

and fl(xj),fz(xj),...,fN(xj),]:1,2,...,n , be their
evaluations of x;, where f;: X >R, ,i=12,.,N.
Let p be a fuzzy measure, a,f € R,
Vi =a+ﬂjcfidg#+e[ , € ~N(0,0'2) ,i=12,.,N
(25)

( ,6’) —argmln{ZN:(yi —a—,BJ. cf,»dgy)z

i=l1

} (26)

then yi=d+ﬁj fidg,, i=1,2,.,N is called the

Choquet integral regression equation of p, where

B=Sy1Sy
R Ll
é :ﬁ;y" —ﬂW;j‘ﬁdgﬂ 27)
N 1 N 1 N
Z[yl_NznyJ‘fidg,u _Nzyfkdgﬂ«}
S _ i=1 i=1 k=1
& N-1
N
Z{Ifdg,, fokdg }
Shh == N -1 (28)

7. Experiment and result

A real data set with 59 samples from a junior high
school in Taiwan including the independent variables,
examination scores of four courses, and the dependent
variable, the score of the Basic Competence Test of junior
high school listed in Table 2 is applied to evaluate the
performances of three Choquet integral regression models
with P-measure, A-measure, and R-measure based on V-
support, and y-support respectively, a ridge regression
model, and a multiple linear regression model by using 5-
fold cross validation method to compute the mean square
error (MSE) of the dependent variable. The formulas of

MSE is
BRI St
N 1:1 yl yl

For any fuzzy measure, p-measures, once the fuzzy
support of the p-measure is given, all the event measures
of u can be found, and then, the Choquet integral based
on p and the Choquet integral regression equation based
on W can also be found.

The singleton measures, V-support and y-support of
the P-measure, A-measure, and R-measure can be
obtained by using the formulas (12) and (16), respectively.

MSE (29)



The experimental results of eight forecasting models
are listed in Table I. We can find that the Choquet
integral regression model with R-measure outperforms
other forecasting regression models.

Table 1 MSE of regression models

Regression model 5-fold CV
measure support MSE
P v 70.4011
Choquet Y 68.9878
Integral
Regression Py v 61.0440
model v 57.5449
v 60.5317
R
Y 56.2746
Ridge regression 63.1253
Multiple linear regression 69.7094

8. Conclusions and future works

When the sub-tests of a composite test are with
interaction, the performance of the traditional additive
scale method is poor. Non-additive fuzzy measures and
fuzzy integral can be applied to improve this situation. In
this study, a real data set from a junior high school
including the independent variables, test scores of four
courses with interaction, and the dependent variable,
junior high school graduates’ scores of the Basic
Competence Test (BCT) are applied to evaluate the
performances of the Choquet integral regression model
with three well known fuzzy measures, P-measure, A-
measure, and R-measure based on two different supports,
V-support, and y-support respectively, the traditional
multiple linear regression model, and the ridge regression
model. Experimental result shows that the following
situations:

Choquet integral regression model with R-measure
based on y-support has the best performance.

(i1) Based on the same fuzzy support, not only the vy-
support but also the V-support, the Choquet integral
regression model with R- measure is better than which
with fuzzy measure, A-measure and P-measure.

(iii)) The Choquet integral regression model with the
same measure, P-measure, A-measure, and R-measure,
respectively, the performance of which is derived from
the y-support is better than which from the V-support.

(iv) The Choquet integral regression model with A-
measure, and R-measure based on V-support and y-
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support, respectively, are all better than the ridge
regression and the multiple regression model.

(v) The Choquet integral regression model with P-
measure is not a good model.

In future we will apply the proposed Choquet integral
regression model with the better measure based on the
best fuzzy support, y-support, to develop multiple
classifier system.
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Table 2 The data set with four courses and science scores of the BCT

No. C1 C2 C3 C4 BCT No. Cl C2 C3 C4 BCT
1 77 75 79 &3 31 31 74 70 80 75 35
2 71 72 78 75 26 32 56 61 75 68 22
3 78 86 86 86 33 33 62 68 72 74 29
4 58 64 68 66 32 34 86 80 82 81 35
5 48 59 65 68 16 35 63 78 88 83 31
6 68 74 77 80 28 36 56 66 76 71 21
7 62 72 84 78 47 37 77 74 80 76 42
8 51 53 65 59 9 38 73 78 84 81 24
9 62 64 76 70 36 39 63 60 68 69 17
10 63 70 81 75 41 40 53 68 80 74 31
11 66 68 75 74 25 41 74 86 87 88 44
12 66 72 80 76 23 42 78 83 81 85 50
13 75 75 85 80 39 43 47 58 66 62 15
14 74 63 69 75 12 44 51 60 63 64 18
15 68 78 85 75 27 45 60 65 75 70 23
16 71 74 80 77 26 46 68 68 80 74 26
17 49 60 69 64 13 47 52 60 70 65 20
18 73 78 84 81 39 48 57 65 75 70 24
19 68 70 74 76 40 49 70 66 70 74 13
20 54 56 62 68 7 50 53 68 74 80 30
21 53 68 74 71 11 51 68 68 78 76 35
22 56 63 69 75 21 52 57 60 68 64 23
23 70 80 78 70 31 53 61 62 70 70 25
24 51 74 82 75 49 54 59 70 80 76 37
25 61 66 72 78 33 55 59 62 70 78 29
26 67 70 80 75 35 56 52 64 76 70 27
27 59 75 80 82 27 57 68 70 80 75 33
28 53 56 70 63 22 58 71 76 74 78 38
29 56 56 65 61 6 59 72 66 78 72 19
30 52 57 67 62 15
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Abstract

The well known fuzzy partition clustering algorithms
are most based on Euclidean distance function, which
can only be used to detect spherical structural clusters.
GK clustering algorithm and GG clustering algorithm,
were developed to detect non-spherical structural
clusters, but both of them fail to consider the
relationships between cluster centers in the objective
function, needing additional prior information. In our
previous studies, we developed two improved algorithms,
FCM-M and FCM-CM based on unsupervised
Mahalanobis distance without any additional prior
information. And FCM-CM is better than FCM-M, since
the former has the more information about the overall
covariance matrix than the later. In this paper, an
improved new unsupervised algorithm, ‘fuzzy c-mean
based on complete Mahalanobis distance and separable
criterion without any prior information (FCM-CMS)”, is
proposed. In our new algorithm, not only the local and
overall covariance matrices of all clusters but also an
additional separable criterion were considered. It can get
more information and higher accuracy by considering the
additional separable criterion than FCM-CMx. A real
data set was applied to prove that the performance of the
FCM-CMS algorithm is better than those of the
traditional FCM algorithm and our previous FCM-M.

1. Introduction

In the 1930s, as an Indian statistician, Mahalanobis
developed the distance, so called “Mahalanobis distance”
which is a distance by using the inverse of the covariance
matrix as the metric. Mahalanobis distance is a distance in
the geometrical sense because the covariance matrices as
well as its inverse are positive definite matrices [1].

As we known, the clustering plays an important role in
data analysis and interpretation. It groups the data into
classes or clusters so that the data objects within a cluster
have high similarity in comparison to one another, but are
very dissimilar to those data objects in other clusters.

978-0-7695-3305-6/08 $25.00 © 2008 IEEE
DOI 10.1109/FSKD.2008.34

87

Jeng-Ming Yih Shin-Wu Liu
Taichung University, Rutgers University,
Taiwan U.S.A.

vih@mail.ntcu.edu.tw  fpan0366@yahoo.com.tw

Fuzzy partition clustering is a branch in cluster
analyses. It is widely used in pattern recognition field.
The well known one, such as, C. Bezdek’s “Fuzzy C-
Mean (FCM)” [2], is all based on Euclidean distance
function. The fuzzy partition clustering algorithm can
only be used to detect the data classes with same super
spherical shapes.

Extending Euclidean distance to Mahalanobis distance,
the well known fuzzy partition clustering algorithms,
Gustafson-Kessel (GK) clustering algorithm [4] and
Gath-Geva (GQ) clustering algorithm [3] were developed
to detect non- spherical structural clusters, but these two
algorithms fail to consider the relationships between
cluster centers in the objective function, GK algorithm
must have prior information of shape volume in each data
class, otherwise, it can only be considered to detect the
data classes with same volume. GG algorithm must have
prior probabilities of the clusters.

In our previous works [7], [8], we added a regulating
factor of covariance matrix to each class in objective
function, and deleted the constraint of the determinants of
covariance matrices in GK Algorithm, we developed two
new unsupervised algorithms, FCM-M and FCM-CM,
And FCM-CM is better than FCM-M, since the former
has the more information about the overall covariance
matrix than the later.

In this paper, an improved new unsupervised
algorithm, “fuzzy c-mean based on complete Mahalanobis
distance and separable criterion without any prior
information (FCM-CMS)”, is proposed. It can get more
information and higher accuracy by considering the
additional separable criterion than FCM-CM.

A real data set was applied to prove that the
performance of the FCM-CMS algorithm is better than
those of the traditional FCM algorithm and our previous
FCM-CM and FCM-M’

This paper is organized as followings: The FCM
algorithm is introduced in section 2, FCM-M is
introduced in section 3, FCM-CM is introduced in section
4, FCM-CMS is described in section 5. Experiment and
result are described in section 6, and final section is for
conclusions and future works.
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2. Fuzzy c-Mean Algorithm

Fuzzy c-Mean Algorithm (FCM) is the most popular
objective function based fuzzy clustering algorithm, it is
first developed by Dunn [6] and improved by Bezdek [3].
The objective function used in FCM is given by Equation

(1)

Jiew (U, 4,X )= Z ilﬂ,&"d.f = Z ilﬂ.’," lx, - |
i=1 j= i=1 j=

@)
;€ [0,1] is the membership degree of data object
X; in cluster ¢ and it satisfies the following constraint

given by Equation (2)
z uy=1,vj=
i=1

C is the number of clusters, m is the fuzzifier, m>1,
which controls the fuzziness of the method. They are both
parameters and need to be specified before running the

algorithm. 4 =||£,- —g,||2 is the square of the Euclidean
distance between data object x;to centerg, . Minimizing
objective function Eq. (1) with constraint Eq. (2) is a non-
trivial constraint nonlinear optimization problem with
continuous parameters g and discrete parameters g, . So
there is no obvious analytical solution. Therefore an
alternating optimization scheme, alternatively optimizing
one set of parameters while the other set of parameters are
considered as fixed, is used here. Then the updating
function for g, and 4, is obtained as Eq. (3) ~ (4)

i=12,.., c
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3. FCM-M Algorithm
In our previous study [7], for improving the above

two problems, we added a regulating factor of covariance

, to each class in objective function,

matrix, -In ‘+ z;!

and deleted the constraint of the determinant of
covariance matrices, |M ,|= p, , in GK Algorithm as the

objective function (5). We can obtain the objective
function of Fuzzy c-Mean based on adaptive Mahalanobis
distance (FCM-M) as following:

i
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To minimize the objective function (5) with constraint (2)

respect to parameters g, o, /4, » Y, ., we can obtained the

updating equations as bellows

o (; [ﬂ,ﬁo)})’l(; [ﬂlﬁo)}ﬁf)”' =1.2...c

(6)
z,=,:1”” (if:%)(ij—&) o
Ly
| (@-a) = (x5 -a)-m][=] all
T 3

4. FCM-CM Algorithm

In our previous study [8, 9], for improving our
proposed FCM-M, we added a regulating factor about
the overall covariance matrix in objective function (5),

and we can get the following new objective function

"R’:‘H—(ﬁﬂ ( (])AZX)
=W[(x ~a| % x—~a)-%|{a~a) % (a —@)} ©
we can obtained the updating equations as bellows
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5. FCM-CMS Algorithm

Now, for improving the algorithm FCM-CM, we
added a separable factor in objective function (9), and we
can get the following new objective function of the new
algorithm FCM-CMS,
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Using the Lagrange multiplier method, to minimize
the objective function (13) with constraint (14) respect to

parameters g, , 4, , X, , we can obtain the updating

i

functions for 4, 4, , and X, are obtained as (15), (16).
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The new fuzzy clustering algorithm (FCM-CMS)
can be summarized in the following steps:
Step 1: Determining the number of cluster; ¢ and m-

value (let m=2), given converging error, € > 0 (such as
£=0.001)

Method 1: choose the result membership matrix of
FCM algorithm as the initial one.

© _
Method 2: let & +1=L2.c be the result centers of k-
mean algorithm, and @; = |x; - al H be distances between
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6. Numerical Example

A real data set of students with sample size 146 from
elementary schools was selected. The main factors of the
data were calculated by using factor analysis. According
to the main factors, the samples were assigned to 4
clusters based on the clustering analysis. The results were
shown in Table 1.

Table 1. The characteristics of 4 clusters
average distance of the

samples

Cluster Concepts points from center of
size

cluster
1 36 Partition -.14984
2 89 Unit 21161
3 16 Fraction -.30416
4 s Unknown -.74490

unit

Each 15 sample points were randomly drawn from
Cluster 1, cluster 2, and cluster 3, respectively, and 5 from
cluster 4.

The classification accuracies of testing samples were
shown in Table 2.

Table 2. Classification accuracies of testing samples.

Algorithms Accuracies (%)
FCM 36
FCM-M 38
FCM-CM 30
FCM-CMS 44

From the data of Table 2, we found that using the
Fuzzy Clustering Algorithm of FCM-CMS could obtain
the best results, even better than that of our previous
research [8].

7. Conclusions and future works

The well known fuzzy partition clustering algorithms
are most based on Euclidean distance function, which can
only be used to detect spherical structural clusters. GK
clustering algorithm and GG clustering algorithm, were
developed to detect non-spherical structural clusters, but
both of them needed additional prior information .in their
objection functions. In our previous studies, we proposed
two improved algorithms, FCM-M and FCM-CM based
on unsupervised Mahalanobis distance without any



additional prior information. And FCM-CM is better than
FCM-M. In this paper, we proposed a further improved
new unsupervised algorithm, “fuzzy c-mean based on
complete Mahalanobis distance and an additional
separable criterion without any prior information (FCM-
CMS)”. This new algorithm, not only the local and
overall covariance matrices of all clusters but also an
additional separable criterion were considered. It can get
more information and higher accuracy by considering the
additional separable criterion than FCM-CMx. A real data
set was applied to prove that the performance of the
FCM-CMS algorithm is better than those of the
traditional FCM algorithm and our previous FCM-M and
FCM-CM

In future, we will consider improve the initial value
problem by using the swarm algorithm.
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Abstract

In search of good classification algorithm of
thermostable proteins is an important issue. In this
paper, a novel classification algorithm of
thermostable proteins by using Hurst exponent and
SVM classifier is proposed. This method not used
before is the first one integrating the physics-
chemistry properties, fractal property and support
vector machine (SVM) classifier. For evaluating the
performance of this new algorithm, a real data
experiment by using 5-fold and Leave-one-out Cross-
Validation accuracy is conducted. Experimental result
shows that this new classification algorithm is feasible
and useful.

1. Introduction

In search of good classification algorithm of
thermostable proteins is an important issue. In this
paper, a novel classification algorithm of
thermostable proteins by using Hurst exponent and
SVM classifier is proposed. This method not used
before is the first one integrating the physics-
chemistry properties, fractal property and support
vector machine (SVM) classifier.

First step, a thermostable proteins data set with two
classes was downloaded from the Protein Data Bank
(PDB), http://www.rcsb.org.

Second step, replacing four feature scores with each
residue of amino acid in sequence of the thermostable
proteins by using the four feature scaling estimators,

978-0-7695-3304-9/08 $25.00 © 2008 IEEE
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we can obtained four non-symbolic sequences of the
thermostable proteins.

Third step, computing the Hurst exponents of each
non-symbolic sequences of the thermostable proteins,
we can obtained four features of Hurst exponents in
each sequences of the thermostable protein.

Last step, the well known and appealing classifier,
Support Vector Machine (SVM), is wused to
discriminate the correct class of the 40 thermostable
proteins with four features of Hurst exponents For
evaluating the performance of this new algorithm, the
above thermostable proteins data experiment by using
5-fold and Leave-one-out Cross-Validation accuracy is
conducted.

This paper is organized as followings: four feature
scoring estimators are introduced in section 2. Hurst
exponent is introduced in section 3, support vector
machine classifier is introduced in section 4,
experiment and result are described in section 7 and
final section is for conclusions and future works.

2. Four feature scaling estimators

2.1. Solvent accessible surface area (ASA)

Residues classified as buried or exposed are
conventionally described by a geometric parameter
calculated using the solvent-accessible surface area
(ASA), which is generated by rolling a spherical probe
with a radius of 1.4 A over the surface of a protein.
The ASA of a protein was obtained using POPS [1], [2]
on the web side (mathbio.nimr.mrc.ac.uk/~ffranca/
POPS/), selecting output residue areas (POPS R).
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Both the polar (hydrophilic) and apolar (hydrophobic)
surface areas can be obtained from the output residue
areas, which were then changed to the percentage of
apolar area for each residue in a protein.

2.2. Exposed/ Buried

The solvent accessibility percentages of the residues
were obtained using the ASAView [3] data base
(www.netasa.org/asaview/). Residues were classified
to be buried in a protein core as the values between 0-
50%, and those were considered to be exposed to
solvent when the percentage exceeded 50%.

2.3. Electrostatic interactions

The number of ion pairs (electrostatic interactions)
was calculated according to the following criterion [4]:
two oppositely charged residues were considered an
ion pair if the distance between the oppositely charged
atoms of these residues was less than 6 A. Asp, Glu,
Arg, Lys and His residues were used to calculate the
ion pairs.

2.4. Contact energies

A 20x20 matrix of effective contact energies, the
interaction energies between all amino acids pairs,
was developed by Miyazawa and Jernigan [5], [6],
which was also called MJ matrix. The MJ effective
energy (eij), which is the element of MJ matrix, was
derived from all the possible interaction energies,
including hydrophobic and solvation energies.
Furthermore, the hydrophobic interaction is the
dominant contribution to the MJ effective energy. The
eij can be presented as the following equation
o =e' + G (1)

i i 2

The ¢'ij is the mixing term, which is the free energy
change upon the mixing of residues of type i and
residues of type j when the contacts in self-pairs i-i
and j-j are separated to form i-j pairs. The eii or ¢jj is
the free energy change after the desolvation of residue
i or of residue j to form the self-pairs i-i or j-j. The
values of eii or ejj should have high correlation with
the hydrophobicity of residue type i or residue type j
(51, [6].

The average contact energy of each type of amino
acid, ei, was used in this work, and it is defined as: [5],

[6].

25
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where
N; = Z Mip 3)
P
and
n=Sn (4)

Jj#0
The supscript p denotes the total number of
contacts in all proteins, nij is the total number of
contacts between i and j types of amino acid residues,
and nir is the total number contacts made by residue

type i.
3. Hurst exponent

The Hurst exponent occurs in several areas of
applied mathematics, including fractals and chaos
theory, long memory processes and spectral analysis
[7], [8]. Hurst exponent estimation has been applied in
areas ranging from biophysics to computer networking.
Estimation of the Hurst exponent was originally
developed in hydrology. However, the modern
techniques for estimating the Hurst exponent comes
from fractal mathematics.

Estimating the Hurst exponent for a data set
provides a measure of whether the data is a pure
random walk or has underlying trends. Another way to
state this is that a random process with an underlying
trend has some degree of autocorrelation. Furthermore,
when the autocorrelation has a very long (or
mathematically infinite) decay this kind of Gaussian
process is sometimes referred to as a long memory
process.

The Hurst exponent (H) is a statistical measure
used to classify time series. H=0.5 indicates a random
series while H>0.5 indicates a trend reinforcing series.
The larger the H value is, the stronger the trend.
Experiments with backpropagation Neural Networks
show that series with large Hurst exponent can be
predicted more accurately than those with H value
close to 0.50. Thus the Hurst exponent provides a
measure for predictability.

Three methods were used most often for the
estimation of the Hurst exponent: the R/S method, the
roughness—length (R-L) method and a variogram. The
R/S method (Hurst et al., 1965) [9] is commonly
perceived as the most suitable for the time series
analysis on the stock market or an optimal volume of
water reservoirs, because it presents the relationship



between irregular (singular) rescaled ranges, signal
value and their local statistical properties relative to
the scale factor. In this study R/S method is used. R/S
method [10] is based on empirical observations by
Hurst and estimates H are based on the R/S statistic. It
indicates (asymptotically) second-order self-similarity.
H is roughly estimated through the slope of the linear
line in a log-log plot, depicting the R/S statistics over
the number of points of the aggregated series. That is,
given a time sequence of observations, w, define the

series
W(t,r)zZ(wu—szr),IStST (5)
u=1
where
W =3, (©)
T =l
Define
Mﬂ=m§Wmﬂ—dPWmﬂ %
and
1 _
0= [ 120057 | ®
t=1

R
In plotting log @)
S(r

against logz , we expect to

get a line whose slope determines the Hurst exponent.

4. Support vector machine (SVM) [11],
[12], [13], [14]

Given the training set of instance-labeled pairs
(x,9),i=12,..,N, where

LeR",yie{l,—l},i=1,2,...,N 9)

The support vector machine (SVM) algorithm
(Boser, Guyon, and Vapnik 1992, Cortes and Vapnik

1995) requires
N
ww+e)y &
i=1

subject to (v_v'¢(lcl-)+b) >1-£&,
£ 20,
where b,c eR,v_v,¢(lcl-)e R"
¢:R" > R"

1=
=
N | —

in
¢

(10)

For any testing point X, € R",y, €{1,-1} , we can

make an assignment according to the following
formula.
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5. Experiment and result

ify, =+1 (1D

ify, =-1

A thermostable proteins data set with two classes
was downloaded from the Protein Data Bank (PDB),
http://www.rcsb.org. The sample included 40
instances, 20 instances are higher thermostable
proteins, and the other 20 instances are lower
thermostable proteins.

Replacing four feature scores called solvent
accessible surface area, exposed/ buried, electrostatic
interactions, and contact energies, with each residue of
amino acid in sequence of the thermostable proteins by
using the four feature scaling estimators, we can
obtained four non-symbolic sequences of the
thermostable proteins.

Computing the Hurst exponents of each non-
symbolic sequences of the thermostable proteins, we
can obtained four features represented as Hurst
exponents respectively in each sequences of the
thermostable protein. The transformed data is listed in
Table 2

The above real data with four features in terms of
Hurst exponents is applied to evaluate the
performances of the Support Vector Machine (SVM)
algorithm by using 5-fold and Leave-one-out Cross-
Validation method to compute the accuracies of the
response category variable.

The experimental results for Accuracies of SVM
classifier are listed in Table 1. We can find that both
5-fold CV and Leave-one-out CV accuracy had the
similar result, the SVM classifier based on Hurst
exponents is a feasible and useful algorithm.

Table 1 Accuracies of SVM classifier

Classification 5-fold CV Leave-one-out
algorithm accuracy CV accuracy
SVM_HE 71.4286 62.5000

6. Conclusions and future works

In search of good classification algorithm of
thermostable proteins is an important issue. In this
paper, a novel classification algorithm of
thermostable proteins combining four feature scaling
estimators, Hurst exponent and SVM classifier is



proposed. For evaluating the performance of this new
algorithm, a thermostable proteins data set by using 5-
fold and Leave-one-out Cross-Validation accuracy is
conducted. Experimental result shows that this new
classification algorithm is feasible and useful.

In future, we will consider look for some improving
classification algorithm of thermostable proteins by
using Hurst exponent and other Classifiers.
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Abstract

Influenza A viruses are negative-strand RNA viruses.
The gene of hemagglutinin (HA) protein in the virus
genome is the major molecule that determines the range
of hosts. Mutation of HA gene may bring infection cross
species. In this paper, we studied physicochemical
constraints during the variations of HA gene. Fuzzy
measure and Choquet integral were used to estimate the
combining effect of different physicochemical properties
for single residue in HA protein that related to infective
events. With this method, an HA sequence was quantified
residue by residue and produced a series of values.
Finally, the Hurst exponent was adopted to infer the
constraints in the series. We found that the
physicochemical constraints in HA sequences mainly
falling into two classes of interdependence strength
during gene variation, that was distinct from the diversity
of clusters in the phylogenetic analysis.

1. Introduction

Influenza A viruses are negative-strand RNA viruses
that infect a wide variety of animals in the nature. The
infection of human may cause significant mortality and
morbidity worldwide [1]. The gene of hemagglutinin
(HA) protein in the virus genome is the major molecule
that determining the range of hosts. The natural reservoir
of influenza virus such as avian flu may emerge in strains
infectious to human by mutation of HA gene [2,3]. Owing
to that, it is important to understand the variation nature
of HA gene. In the past, the researches in this field mainly
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have been focused on the phylogenetic reconstructions
[4,5]. As shown in the explosive information on HA
sequences, the reconstruction of a phylogenetic tree can
provide abundant evolution information, and help in
understanding the drifts of influenza hosts [6]. However,
the feature and tendency about physicochemical
properties of gene variations for specific host are never
been discussed.

Fuzzy measure theory considers a number of special
classes of measurements, each of which is characterized
by a special property. In the fuzzy measure theory, the
conditions are precise, but the information about an
element alone is insufficient to determine which special
classes of measure should be used. The fuzzy measure
estimates the possible interactions among the special
classes of measurements [7]. Choquet integral is a tightly
related concept with fuzzy measure. It assesses the
integrated effect for some issue based on the concept of
fuzzy measure [7,8]. The Hurst exponent (H) is a
statistical measure used to classify time series [9]. For
example, H=0.5 indicates a random series while H>0.5
indicates a constrained reinforcing series. The larger the
H value is, the stronger the constraint. In this paper, we
studied the physicochemical constraints of HA protein of
Influenza A viruses regarding to serotypes H1, H3, and
H5. We concerned three types of physicochemical
property for each residue that have acidity, Van der waal
volume, and hydrophobicity [10]. Pearson’s correlation
coefficient was used to quantify the dependence of
physicochemical properties on infection hosts, human or
avian. For each residue, there were three values of
Pearson’s correlation coefficient corresponding to three
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types of physicochemical properties. Based on the
coefficients, Sugeno A-measure [11] was adopted to
calculate the fuzzy measure. Subsequently, the Choquet
integral was applied to assess the integrated effect of
physicochemical properties on infection hosts for each
residue. A protein sequence implies a series of integral
values. Finally, we used Hurst exponent to analyze the
value series for exploring the integrated physicochemical
constraints in the protein sequence.

2. Methods

2.1 Sequence data collection

The sequence data of Influenza A viruses used in this
research were obtained from public databases: Influenza
Sequence Database (http://www.flu.lanl.gov). All HA
nucleotide sequences of human and birds in this databases
were downloaded on October 16, 2006. The HA
sequences were extracted, of which less than 900
nucleotides were considered as partial sequences and
were excluded from this study. Identically coded
sequences are considered as duplicates and only the
carliest isolated strain among the duplicates was used as a
representative sequence in the group. In total, we had 831
HI sequences, 3018 H3 sequences and 1376 HS5
sequences for our analysis. All sequences were isolated
between 1963 and 2006 from locations around the globe.
The exact isolation time (calendar year), host type and
location can be found in the strain names.

2.2. Residue coding

The sequence alignment processes were implemented
in ClustalX 3.14 [12] regarding to H1, H3, and HS. After
alignment, the sequence length regarding to H1, H3, and
HS were 565, 567, and 583 amino acids respectively. The
protein residues were coded according to its values of
acidity, Van der waal volume, and hydrophobicity in the
situation of single amino acid [10, 13], as shown in table
1. For every physicochemical property, we had a matrix
size of 831x565 for H1 group, 3018x567 for H3 group,
and 1376x583 for H5 group.

Table 1. The residue codes regarding to acidity,
Van der waal volume, and hydrophobicity.

Van der
Amino acid Acidity waal Hydrophobicity
volume
Alanine 7.0 67. 0.616
Cysteine 84 86. 0.68
Aspartic acid 3.9 67. 0.028
Glutamic acid 41 109. 0.043
Phenylalanine 7.0 135. 1.
Glycine 7.0 48. 0.501
Histidine 6.0 118. 0.165
Isoleucine 7.0 124. 0.943
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Lysine 10.5 135. 0.283
Leucine 7.0 124, 0.943
Methionine 7.0 124. 0.738
Asparagine 7.0 148. 0.236
Proline 7.0 90. 0.711
Glutamine 7.0 114, 0.251
Arginine 12.5 167. 0.

Serine 7.0 73. 0.359
Threonine 7.0 93, 0.45
Valine 7.0 105. 0.825
Tryptophan 10.5 163. 0.878
Tyrosine 7.0 141. 0.88

2.3. Inference of physicochemical constraints

Choquet integral is defined to integrate functions with
respect to the fuzzy measure [7]. It is very useful in
assessment of the effect that results from the nonlinear
interactions. The definitions of fuzzy measure and
Choquet integral are as follows:

Definition 1. Let N be a finite set of criteria. A
discrete fuzzy measure on N is a set function ,.,v Loy

which satisfies the following axioms:
(i) v(¢#) =0, v(N) =1 (boundary conditions)
(i) A < B implies v(A) < v(B) (monotonicity)
for A,Be 2",
For each subset of criteria S € N, v(S) can be

interpreted as the weight of the coalition S.
The Sugeno A-measure is a special case of fuzzy
measures. It has the following definition.

Definition 2. Let N Z{XI,XZ,-",X”} be a finite
setand A € (—1, 00) . A Sugeno A-measure is a function v
from 2" to [0, 1] with properties:

1) vv)=1.

Gi)if A4,Bc2 with ANB=¢ then

V(AU B)=Vv(A)+Vv(B)+ Av(A4)v(B).
As a convention, the value of v at a singleton set{X l.}

is called a density and is denoted by V{X i} . In addition,
we have that A satisfies the property

A+1=M0+Av(X)) ()

Tahani and Keller [14] as well as Wang and Klir [15]
have showed that that once the densities are known, it is
possible to use the previous polynomial to obtain the
values of A uniquely.

Definition 3. Let v be a fuzzy measure on N. The
discrete Choquet integral of function x: N— R with
respect to v is defined by



Cv(x):Zx(i)[v(A(i))_V(A(iH))] , where (- )
i=1

indicates a  permutation on N  such that
Xy S Xy S S X, . Also
Ay = {x(i): " x(n)} , and A, =¢ For

instance, if x; < x; < Xx,, then rank X, X,,Xx; from the
smallest one to the largest one. The result is X, =X,

X5y = X3, X3y = X, . Finally,

C,(x),%,,X;) = Xy *[V({xlaxzax3 })] +

(x; —x,)* [V({xz > X3 }] +(x, —x3)* [V({xz })]
(2)

The discrete Choquet integral takes into account the
interaction by means of the fuzzy measure v . If the
criteria are independent, the fuzzy measure is additive.
Then, the discrete Choquet integral coincides with the

weighted arithmetic mean method. That is, C (x) =

n
Zv(i)xi , X€ R". In this study, the correlation-based
i1

method proposed by Hsiang-Chuan Liu in 2006 [16,17] to
construct the fuzzy measures in the discrete Choquet
integral was used.

The Hurst exponent occurs in several areas of applied
mathematics, including fractals and chaos theories, long
memory processes and spectral analysis. Hurst exponent
estimation has been applied in areas ranging from
biophysics to computer networking. Estimation of the
Hurst exponent was originally developed in hydrology.
However, the modern techniques for estimating the Hurst
exponent come from fractal mathematics.

Estimating the Hurst exponent for a data set provides
a measure of whether the data is a pure random walk or
has underlying trends. Another way to state this is that a
random process with an underlying trend has some degree
of autocorrelation. Furthermore, when the autocorrelation
has a very long (or mathematically infinite) decay this
kind of Gaussian process is sometimes referred to as a
long memory process.

The Hurst exponent (H) is a statistical measure used to
classify time series. H=0.5 indicates a random series
while H>0.5 indicates a trend reinforcing series. The
larger the H value is, the stronger the trend. In this paper
we investigate the use of the Hurst exponent to classify
series of financial data representing different periods of
time. Experiments with back propagation Neural
Networks show that series with large Hurst exponent can
be predicted more accurately than those with H value
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close to 0.50. Thus the Hurst exponent provides a
measure for predictability.

Three methods were used most often for the estimation
of the Hurst exponent: the R/S method, the roughness—
length (R-L) method and variogram. The R/S method
[18] is commonly perceived as the most suitable for the
time series analysis on the stock market or an optimal
volume of water reservoirs, because it presents the
relationship between irregular (singular) rescaled ranges,
signal value and their local statistical properties relative to
the scale factor. In this study R/S method is used. R/S
method [19] is based on empirical observations by Hurst
and estimates H are based on the R/S statistic. It indicates
(asymptotically) second-order self-similarity. H is roughly
estimated through the slope of the linear line in a log-log
plot, depicting the R/S statistics over the number of points
of the aggregated series. That is, given a time sequence of

observations w, s define the series
t 1 T
W(t,t)=Y (w,—W,) , where W,=—>w,
u=1 (=
’ T
Define R(7) = max W(tt)— min W(t,1)
=] t=!

and S(7)= (lZ(wt -W, )Zj . In plotting
T

R(7)
log S(0)

against l0g 7, we expect to get a line whose

slope determines the Hurst exponent.

There is a 7-step to make hurst exponent analyze:

Step 1. With quantizing three properties each amino
acid of each protein sequence, we have three time series
for each protein sequence.

Step 2. For each property, normalize the data for each
position which the same position of aligned protein
sequences for affecting human and birds. That is, label
elements in the sample by / and treat each position in
aligned protein sequence as a random variable. Assume
the size of the sample is k. For the element 1, let i-th
position of aligned protein sequences for property m be a
random variable Xl.l’m where 1 <I<k, 1=m=3, and n is
the of If

mlax{X L }— mlin{X L }

length aligned protein  sequences.

+0, then
X - mlin{X l.’*’”}

mlax{X . mlin{X Lo

Z il’m = Otherwise, set

Z"m=0.

Step 3. Let ¥ "be a random variable which is 1 if
affecting the human and 0 otherwise for the element /. Let



Xim :(Xil’minz,ms"'aXik’m)v and
Y =", Y%, Y")'". For each m, compute corr( X",

Y) where “corr” is the Pearson correlation coefficient. For
m

ecach m, define the weight w; to be
1+ corr(X",Y
2( 1) for each i. That is, v({le}) =w"

for I =m=3and I <i=n.
Step 4. For using Sugeno A-measure, solve (1) for A.
Then, for each i

compute v({Xl.l, Xiz}) ,v({Xl.l, Xf}) ,V({Xf, Xf}) by

Sugeno A-measure. Note that v({X 1.1 , X iz , X 13}) =1.

Step 5. Combined the three properties to be one,
compute the Choquet integral for each position by
equation (2). Then we get one time series for each aligned
protein sequence.

Step 6. Calculate Hurst exponent for each aligned
protein sequence.

Step 7. Analyze the results.

The above steps were calculated using Matlab
package, except for Hurst exponent was obtained from the
website: http://www.mathworks.com/matlabcentral/.

3. Results

We calculated the Hurst exponent regarding to H1, H3,
and HS5 to infer the physicochemical interdependency
among the residues in the HA protein. The serotype H1
are shown in Fig.1, there are 2 clusters in the frequency
distributions of Hurst exponents for human strains and
avian strains. The Hurst exponent is nearby 1 for one
cluster, and nearby 0.5 for another cluster. That mean
some variations are constrained strongly, and some
variations are random-like. The tendency of H3 is shown
in Fig.2 and similar to H1, but the Hurst exponents in the
two clusters are closer and away from 1 and 0.5. The
results about H5 are shown in Fig.3, the distribution
pattern is different from H1 and H3 for avian strains.
There are three clusters in the frequency distribution.

The phylogenetic analysis is based on the mutation
frequency between residues regarding homologous
proteins. The evolution of quantitative property during the
process of residue changes is ambiguous. In this study, we
proposed a method based on the quantitative properties of
residues regarding to infection issue of Influenza A
viruses to estimate the constrain strength in the HA
proteins. The distribution of constrain strength are
distinct from the diversity of clusters in the phylogenetic
analysis.
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Figure 1. The frequency distribution of H1 Hurst exponents
for human strains and avian strains.

Host
Human Avian

0.95-] F0.95
i m
2 090 090 &
o ©v
= 28
5 0.85 085 &
5 3
5 0.80— 080 B
== =8

R R I e B A I

800 600 400 200 0 200 400 600 800
Frequency Frequency

Figure 2. The frequency distribution of H3 Hurst exponents
for human strains and avian strains.
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Figure 3. The frequency distribution of H5 Hurst exponents
for human strains and avian strains.

4. Discussion

The gene of HA protein in the virus genome is the
major molecule that determining the range of hosts.
Basically, the infection process is physicochemical



interaction between receptor of host and HA protein. For
the sake of successful infection, the gene variations must
follow certain rules under physicochemical base. Higher
value of Hurst exponent implies more constraints or intra-
structure in the sequence properties. As to that, the gene
variations are apt to destroy the intra-structure with high
value of Hurst exponent. The variation tolerance is
different for the same serotype of HA corresponding to
the different clusters of Hurst exponents.

The constraints in HA sequences mainly fall into two
classes of Hurst strength during gene variations. That
imply the variation tolerance of HA gene is diverse in the
same serotype of HA.
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Abstract:

The well known fuzzy measures, A-measure and
P-measure, have only one formulaic solution, the former is not
a closed form, and the later is not sensitive. An improved
multivalent fuzzy measure with infinitely many solutions of
closed form, called L-measure, is proposed by our previous
work. In this paper, expend the L-measure for being more
choice, and get an improved fuzzy measures, called “hth-order
L-measure”, denoted as L"-measure , and a new Choquet
integral regression model based on this L"-measure is also
proposed. For evaluating the proposed regression models with
different fuzzy measures, a real data experiment by using a
5-fold cross-validation mean square error (MSE) is conducted.
The performances of Choquet integral regression models with
fuzzy measure based on A-measure, P-measure, L-measure
and L"-measure, respectively, a ridge regression model, and a
multiple linear regression model are compared. Experimental
result shows that the Choquet integral regression models with
L"-measure based on y-support outperforms others
forecasting models.

Keywords:
A-measure; P-measure; L-measure; L"-measure; Choquet
integral regression model

1. Introduction

When interactions among independent variables exist
in forecasting problems, the performance of the multiple
linear regression models is poor. The traditional improved
methods exploited the ridge regression models [1]. In this
paper, we suggest use the Choquet integral regression
models based on some single or compounded fuzzy
measures to improve this situation. The well known fuzzy
measures, A-measure and P-measure, have only one
formulaic solution of fuzzy measure, the former is not a
closed form, and the later is not sensitive. Recently, some
Choquet integral regression models based on different
fuzzy measures were used by our previous works to further
improve this situation [2, 3, 4, 5, 6].

978-1-4244-3703-0/09/$25.00 ©2009 IEEE

In our previous works [7, 8, 9], we found that the
Choquet integral regression model with L-measure based
on y-support has the best performances. In this paper, we
proposed a new fuzzy measure, Hth-order L-measure,
denoted as L"-measure, which has infinitely many solutions
of fuzzy measure with closed form and apply it to form a
Choquet integral regression model.

This paper is organized as followings: Two well
known fuzzy measure, A-measure, P-measure and our
L-measure are introduced in section 2; our new measure,
L"-measure, is introduced in section 3; the fuzzy support,
y-support are described in section 4; the Choquet integral
regression model based on fuzzy measures are described in
section 5; experiment and result are described in section 6;
and final section is for conclusions and future works

2. Fuzzy Measures

The well known fuzzy measures, the A-measure
proposed by Sugeno in 1974, and P-measure proposed by
Zadah in 1978, are concise introduced as follows.
2.1. Fuzzy Measures [10, 11, 12]

A fuzzy measure 4 on a finite set X is a set function
1:2% —[0,1] satisfying the following axioms:

1) u(¢)=0,u(X)=1 (boundary conditions) 1

2) AcB= u(A)<u(B) (monotonicity) )

2.2. Singleton Measures [4, 5, 6]

A singleton measure of a fuzzy measure 4 on a

finite set X is a function s: X —[0,1] satisfying:
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s(x)zﬂ({x}),xeX 3)

s(x) is called the density of singleton x.

2.3. A-measure [11, 12]

For given singleton measures s, a A-measure, g,,is a
fuzzy measure on a finite set X, satisfying:
1) A,Be2* ANB=¢,AUB#X

= g,(4UB) =g, (A)+g;(B)+2g,(4)g:(B) (4

8, ({xr}) (5)

Note that once the singleton measure is known, we can
obtain the values of A uniquely by using the previous
polynomial equation. In other words, A-measure has a
unique solution without closed form.

li[[1+/1s(x,.)]=/’i+l>0,s(x,.)=

2.4. P-measure [13]

For given singleton measures s, a P-measure, gp,isa
fuzzy measure on a finite set X, satisfying:
A4 X _ _
Ae?2 3gP(A)—l’ElE%XS()C)—l’EIngP({x}) (6)

2.5. L-measure [6, 9]

For given singleton measure s, a L-measure, g;,is a

fuzzy measure on a finite set X, |X | =n, satisfying:

D) Le[0,) (7)
2 Y s0=Y g ({x}) (®)
xe X xeX
3) "Ac X,n—|4+(4]-DL>0
(4 -DLD s(x)
gL(A):r?S([s(x)J+ sed [1—%x[s(x)ﬂ

L=l (14 -1 L] 2s(x

(€))
[Note]
i) L-measure has infinitely many solutions with closed
form.
i) When L=0, the L-measure is just a P-measure with
closed form.

3. Hth-Order L-measure, L"-measure
3.1. Definition of Hth-Order L-measure, L"-measure

For given singleton measure s, a Hth-order L-measure,

g > is a fuzzy measure on a finite set X, |X |=n,

satisfying:
1) Le[O,oo),PeN (10)
2) s =Yg, ({x) (11)
xe X xeX

3) "Ac X,n—|4+(4-DL>0
g, (A)= %L%X[S(x)] +

(IAI—DL{Z[S(x)J%} [1-max[s(x)]]
oot (-0 {ZETf + 3 i)

(12)

3.2. Important Properties of hth-Order L-measure,
L"-measure

1) Property 1

For given singleton measure s, Le [O,oo) , Hth-order
L-measure is a fuzzy measure.
[Proof]

When L=0, L"-measure is just the P-measure.

When L>0;

i) VA c X ,Since

(4-nL {Z[s (x)]% F

xeAd

0< P <1
[n—|A|+(|A|—1)LJHZ[S()C)]%Z} + Z s(x)}
xeA xe(X-A)
(13)
We get 0<g,(4)<I, The boundary condition is
satisfied.
<|B|<[x]=
= majc[ ]<ma£([ (x)] (14)
h
OS{Z[S(X)]%} S{Z[s(x)]%} (15)
xeAd xeB
0< Z z s(x) (16)
xe(X-B) xe(X—A)

3178



Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, Baoding, 12-15 July 2009

(a0 0511 [t

xeA

=0< } -
[{Z[S(X)J%} + Z s(x)J [n—|A|+(|A|—1)L][{Z[s(x)]%} + z S(x)
xeA xe(X—-4) ] xeA xe(X-4) J
s(x) % h B0 S s(x) h
< {Z‘;[ hJ } <1 an  _f, - {GB[ ] ;}
HQS(W} (Z)”J [+ (s )JHZB;M%} . (;B)st
(141=1)=(15=1). |B|<n 4] (18) * )
= (-0 L[n-|B]<(Bl-D)L[n-4] (9 (|B|—1){Z[s<x>]%}

< (|A|—1) < (|B| ) - L l—r;éaz[s(x)]
0—[n_|A|+(|A|—l)LJ_[n_|B|+(|B|_1)L]—1 (20) [ }

i JHZ[S J/} Z) S
(|B|—1)L{Z[S (x) ]%'} (25)

b <1 Since (|B|-1)[n—|d|+(|a|-1)L]-(|a|-1)[n—|B]+(|B]-1)L]

ESERER ]HZ[ ]%’} xgz }_ =(|8]-|4l)(n-1) =0 (26)

=0<

<

) L L
1) and {Z[s(x)}d} ({Z[s(x)}ﬁ} + z s(x)

If I}}Eaj([s( J max|: Jng p(B) (22) xeB xed xe(X—4)
If max|: ]<max[ ] (23) _{Z[S(x)]%} HZ[S(X)]%} + Z s(x)
Let max[s(x)]=max[s(x) ] +c,0<e<1 (24) xed h xeb x";(X’B)
& (B)-g, (4) h ={Hs<x)]”f} (Z_)s(x)—{ﬁsuﬂ”f} 3 shfzs

(|B|—1)L{Z[s(x)]%} {1—(21€aj([s(x)}+c)} 27)
(] -+ (1) ]

[n-|B|+<|B|—1>LJH§[S<X>J%F*,CEMZ_BS“‘)J {z[s<x>1%}h{{2[s<x>1%}h+ > s(x)]
S = wel¥
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2 (Ja|-1)[n |8+ (|B]-1)L ]x
{;[S(X)]% }h {{;[S(X)]%}h +x€z s(x)] (28)

(x-5)
<|B|—1>{23[s<x>]%
[n—|B|+<|B|—1)L]H23[s(x>]%} + (XZ_B)S(")]
_ o 1
@&%zmm@
xeA 20
["-IAI+(|A|—1)L]{{Z;[s(x)]%} + (;A)s(x)L
(29)
S_ince .
(|B|—1>L{z[s<xu%}
1— xeB >0
[n|B|+(|B|1)4[{2;&(@}%} + (;B)sm]
_ (30)
and L[l—r}rcleaj([s(x)ﬂzo (1)
We get g, (B)-g,r(4)20 (32)

The monotonicity condition is satisfied.
2) Property 2

When h=1, Hth-order L-measure is L-measure; that is,
L-measure is the special case of Hth-order L-measure.

4.  Y-support [7, 8, 9]

For given singleton measure s of a fuzzy measure | on
a finite set X, if ) s(x)=1, then s is called a fuzzy

xeX
support measure of ., or a fuzzy support of y, or a support
of p. Two kinds of fuzzy supports are introduced as below.
Let p be a fuzzy measure on a finite set

X ={x.x%,...x,}, »; be global response of subject i

and f; (xj) be the evaluation of subject i for singleton

x;, satisfying:

0< fi(x;)<Li=12..N,j=12..n  (33)
If
y(x,)= nlﬂ(j(x")) L J=12n (34)
;[Hr(f(xk))]
where r(f(x]))= S (3%
S,S,,

1 < P& Y
3]
1 BN ’
) IR WIN B

then the function y: X —[0,1] satisfying x({x})=y(x),
Vxe X isa fuzzy support of , called y-support of .

6. Choquet Integral Regression Models
6.1. Choquet Integral [4, 12, 13]

Let p be a fuzzy measure on a finite set X. The
Choquet integral of f;: X — R, with respect to p for

individual i is denoted by
J Cﬁdﬂ:i[ﬁ(x<f>)‘ﬁ (%9 H”(%)) i=12.N (40)
=

where fl-(x(o)):o, fl-(x(j)) indicates that the

indices have been permuted so that

0= fi(x0)) < i (x)) < i ()

A :{x(f')’x(j+1)""’x(")}

(41)

(42)
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6.2. Choquet Integral Regression Models [4, 5, 6, 7, 8,

9]

Let »,,¥,,....yy be global evaluations of N objects
and i (x; ), f5 (% )sen S (%))5 S =1.200m , be  their
evaluations of X, where f,: X =R, ,i=12,.,N.

Let p be a fuzzy measure, a,f€ R,

yi=a+ﬂjc_ﬁdgﬂ+ei L ~N0.2%) L i=l2..N (43)

(&,,3)=argrg{in{i(yi —a-p cfidg,,)z} (44)

s i=1
then j/i=ét+,3j_flidgﬂ,i=1,2,...,N is called the

Choquet integral regression equation of p, where

B=5,1S, (45)
L 1Y s 1 &
aw;yi—ﬂﬁgjﬁdgﬂ (46)

SO P

=1

Sy =+ 0 (47)
N 1 N 2
ZUﬁdgw —NZJ.fkdgﬂ*}
S, = i=1 k=1 (48)
7 N-1

7. Experiment and Result

A real data set with 59 samples from a junior high
school in Taiwan including the independent variables,
examination scores of four courses, and the dependent
variable, the score of the Basic Competence Test of junior
high school is applied to evaluate the performances of
four Choquet integral regression models with P-measure,
A-measure, L-measure and L"-measure based on y-support
respectively, a ridge regression model, and a multiple linear
regression model by using 5-fold cross validation method to
compute the mean square error (MSE) of the dependent
variable. The formulas of MSE is

1 & o

MSE =— =
- ;(y, )
For any fuzzy measure, p-measures, once the fuzzy
support of the p-measure is given, all event measures of p
can be found, and then, the Choquet integral based on p and

(49)

the Choquet integral regression equation based on p can
also be found.

The singleton measures, y-support of the P-measure,
A-measure, L-measure and L"-measure can be obtained by
using the formulas (30).

The experimental results of six forecasting models are
listed in Table 1 and Table 2. We can find that the Choquet
integral regression model with L"measure based on
v-support outperforms other forecasting regression models.

TABLE 1.MSE OF CHOQUET INTEGRAL REGRESSON
MODELS WITH PTH-ORDER L-MEASURE BASE ON
y-SUPPORT

MSE of Choquet Integral Regression Models
with Hth-order L-measure based on y-support

h 5-fold CV MSE h 5-fold CV MSE
1 56.2711 10 53.5390
2 547839 11 53.5371
3 54.1228 12 53.5361
4 53.8145 13 53.5357
5 53.6690 14 53.5354
6 53.5999 15 53.5353
7 53.5668 16 53.5352
8 53.5507 17 53.5352
9 53.5429 18 53.5352

TABLE 2. MSE OF REGRESSON MODEL

Regression model

5-fold CV MSE

measure
Choquet P 68.9878
egral p 57.5449

egression

model L 56.2711
Min L" 53.5352
Ridge regression 63.1263
Multiple linear regr 69.7094

8. Conclusions and Future Works

In this paper, a novel fuzzy measure, second-order
L-measure, Choquet integral regression models with fuzzy
measure are proposed. An educational data experiment is
conducted for comparing the performances of a ridge
regression model, a multiple linear regression model, and
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the proposed Choquet integral regression model with
P-measure, A-measure, L-measure and second-order
L-measure based on y-support. Experimental result shows
that the Choquet integral regression models with the
proposed second-order L-measure based on y-support
outperforms other forecasting models.

In future, we will apply the proposed Choquet integral
regression model with fuzzy measure based on y-support to
develop multiple classifier system.
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Abstract:

In this paper, for grouped data, three kinds of the
Choquet integral regression models with fuzzy measures based
on joint entropy, complexity and multiple mutual information
is considered. The above three fuzzy measures are called,
E-measure, C-measure and M-measure, respectively. For
evaluating the Choquet integral regression models with these
three information-based fuzzy measures, a real grouped data
experiment by using a 5-fold cross validation accuracy is
conducted. The performances of the Choquet integral
regression models based on these three fuzzy measures,
respectively, and the traditional multiple linear regression
model are compared. Experimental result shows that the
Choquet integral regression model based on our proposed
M-measure has the best performance and it outperforms the
Choquet integral regression model based on our previous
proposed C-measure.

Keywords:
E-measure; C-measure; M-measure; Choquet integral;
Choquet integral regression model

1. Introduction

When interactions among independent variables exist
in forecasting problems, the well known multiple linear
regression method is unable to overcome the undesirable
phenomenon. In contrast, the Choquet integral takes into
account the interactions among criteria [1]. In addition,
there is a key issue unsolved in the application of fuzzy
integral with the determination of density values to decide
the fuzzy measures in the fusion process [2], [3]. In this
paper, for grouped data, three kinds of fuzzy measures
based on information theory are considered, the first one is
the joint entropy-based fuzzy measure, called E-measure
[4], [5], [6], the second one is the complexity-based fuzzy
measure proposed by or previous study, called C-measure
[7], and the third one is our proposed multiple mutual

978-1-4244-3703-0/09/$25.00 ©2009 IEEE

information-based fuzzy measure, called M-measure.

For evaluating the Choquet integral regression models
with these three information-based fuzzy measures, a real
grouped data experiment by using a 5-fold cross validation
accuracy is conducted. The performances of the Choquet
integral ~ regression  models  with  these  three
information-based fuzzy measures, respectively, and the
traditional multiple linear regression model are compared.

This paper is organized as followings: three kinds of
information-based fuzzy measures are introduced in section
2, Choquet integral is described in section 3. Choquet
integral regression models with respect to different fuzzy
measures are described in section 4, Experiment and result
are described in section 5 and final section is for
conclusions and future works.

2. Information-based fuzzy measures
2.1. Fuzzy measure [2], [3]

The Choquet integral takes into account the interaction
by means of fuzzy measure, to compute the Choquet
integral we need to compute a fuzzy measure first. The
formal definition of fuzzy measure is given as below

[Definition 1] A fuzzy measure 4 on a finite set X

is a set function g:2% —[0,1] satisfying the following

axioms:
1) u(¢)=0, u(X)=1 (boundary conditions) (1)
2) AcB= u(A)<pu(B) (monotonicity) )

In this paper, entropy-based method and two of our
proposed methods, complexity-based method and multiple
mutual information- based method, are discussed.
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2.2. Joint entropy-based fuzzy measure, E-measure
2.2.1. Joint entropy [4]

[Definition 2] Let Y, X, X,,...,X,, be(m+1) random
variables, the joint entropy of Y and X, X,,..X,, ,
denotedas H(Y,X,,X,,...,X,,), is defined as follows

H(Y, X, X,,... X,,) :—E[log Frxox ( y,xl,...,xm)] 3)
[Property 1]
0<H(Y, X)) <H(Y, X, X,) <..<H(Y, X0, Xy,.0n X,)) (4

2.2.2. Joint entropy-based measure, E-measure [5], [6]

[Definition 3] The joint entropy-based measure,
E-measure, on a finite set X ={X|,X,,..,X,} is a set

function satisfying the following conditions
1) y,,i=1,2,..,N are scores of dependent variable Y

for examinee I, X' :{Xf,Xé,...,X,’;} is the set of n

independent variables for any individual x’/ ¢ — R,
i=12,.,N,
variable j for individual i .

j=L2,.,n are scores of independent

2 Xfl),x&),‘.‘,xén)} is a permutation of
{x{ , x5 ,...,x,’;} for examinee i, satisfying
xél) < x{Z) <..< xén) (5)
3) Ay =X Xy K o7 =1 20n ()
H(r.4(;)
4 R T S 00
) E£(40)= 70X

= 7
H(Y: X Xy X)) 2
where A{j) cX
H(Y. A4 )=H (Y. X)X ) Xy )
B _E|:logjr(y’x(’f)’x(i/+1) ,,,,, X(i,,)) (y’x(lj) ’xEj'H) ,...,X(ln) ):|
H(Y,$)=0 (8)
[Property 2]

IZE(Y,A(il))ZE(Y,A(iz))Z...ZE(Y,A(in))ZO )

2.3. Complexity-based fuzzy measure, C-measure
2.3.1. Complexity

[Definition 4] Let Y, X, X,,...,X,, be (m+1) random
variables, the complexity of Y and X, X,,...,X,,, denoted
as N(Y,X.,X,,...X, ), is defined as the number of
different patterns of the outcomes of (Y, X, X,,....X,, )

[Property 3]

0=NEG <N LX) <MY )< SMVX XX, (10)

2.3.2. Complexity-based fuzzy measure, C-measure [7]

[Definition 5] The complexity-based fuzzy measure,
C-measure, on a finite set X ={X,,X,,...X,] is a set
function C: 2% — [0,1] satisfying the following conditions

1) y;,i=12,.,N are scores of dependent variable Y

for examinee i, x'={x{,x},.. X} is the set of n

independent variables for any individual x’/ X —R",
i=12,...N ,
variable j for individual i.

2) {xél),xéz),...,xén)} is a

j=L2,...,n are scores of independent

permutation  of

{x{,x‘z,.,.,x;} for examinee i, satisfying

xél) < xéz) <...< x(in) (11)
3 aly ={X( Xy Xl )i =1 200n (12)
_ N(v, 4
Y c(a)- N((Y;)((j)))
R
= 13)
N(Y; X, X,,...X,)
[Property 4]
1=C(4))2C(4hy)2 2 C(4),)=0 (14)

2.4. Multiple mutual information-based fuzzy measure,
M-measure [8]

2.4.1. Multiple mutual information

[Definition 6] Let Y, X, X,,...,X,, be (m+1) random
variables, the multiple mutual information of Y and
X, X,,...,X,, , denoted as (Y, X, X,,....,X,,), is defined
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as follows
(Y, X,X,,.nX,)=

fYX X (y,xl,...,xm)
o (o, Jog ot (3)
zv‘;k’ VXX, 1 fY (y)fx,‘...,)(m (xl""’x,,,)
[Property 5]
0<I(Y, X)) <I(Y, X, X,) <. <I(Y, X, Xy, X,)  (16)

2.4.2. M-measure

[Definition 7] The M-measure on a finite set
X ={X,X,,..X,} is a set function

M:2¥ > [O,l] satisfying the following conditions
1) y;,i=1,2,.,N are scores of dependent variable Y

for examinee i, x'={x/ x} . X} is the set of n

independent variables for any individual x; X —RY,
i=12,.,N,

variable j for individual 7.

j=L2,..,n are scores of independent

2) xfl),xéz),...,xfn)} is a permutation of

{xl’,xg,,..,x;} for examinee 1, satisfying

xél) < x(z) <..< xén) (17)
9 g ={ity Kimge it 09
S I(ral)
Vv (40;)= I(Y;X])
11X Xy X ) (19)
[(Y;XI,XZ,...,Xn)
where 1(Y,¢)=0, A([_,-)CX
[Property 6]
Dele e swlalso

3. Choquet integral [3], [4]

[Definition 8] Let & be a fuzzy measure on a finite
set X. The Choquet integral of f;: X — R, with respect
to 4 forindividual i is denoted by

[ fdu= Z;[f (30 )= 4 (300 ) Je (4 i = 1200 21)

where fi(x(o))zo, fi(x(j)) indicates that the indices

have been permuted so that

Osfi(x(l))Sfi(x(z))S...Sfi(x(n)),

Ay =% X5 (22)

4. Choquet integral regression models [8]

[Definition 9] Let y;,¥,,...,yy be global evaluations
of N objects (or by N individuals), and f (xj ),f2 (xj),...,
fN(xj),j=1,2,...,n, be their evaluations of X, where

fitX >R, ,i=12,.,N. Let u be a fuzzy measure,
a,feR

yl.=a+ﬁf fidg, e, ¢ ~N(0,67),i=1,2,.,N (23)
N N 2
(¢.8)=argmin| > (y; ~ar~ B[ fide,) (24)
=]
then ﬁi=d+ﬁjﬁdg#, i=1,2,..,N is called the optimal

Choquet integral regression equation of  , where

B=S,15, (25)
1Y e
a:W;yi_ﬂW;Iﬁdg,u (26)
N 1 N 1 N
X{yi - Zyi}{jf,»dg,f - ijkdgﬂ%}
S o =1 i=1 k=1 (27)
o N-1
N | & 2
S e
Sy = T 28)

5. Experiment and result

A real raw data set comes from a class with 59
students in a junior high school in Taiwan, and each student
took 3 courses (namely physics and chemistry, biology, and
geoscience) for natural science. The credit hours for these
three courses are 16, 4, and 4, respectively. The maximum
score for each course is 100 points. Later, all students took
a Basic Competence Test of natural science for all junior
high school students. The maximum and minimum scores
of the Basic Competence Test are 60 and 1. To simplify the
notations, the scores of physics and chemistry, biology, and
geoscience are denoted by C1, C2, and C3, while the scores
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of natural science in the Basic Competence Test is denoted
by BCT. The detailed information is depicted in TA BLE 2.

For computing each joint entropy and mutual
information, we need to consider the distributions and the
joint probability about the data, and we need to decide the
number of level to be used to classify the raw data into the
level of the score for each criterion. In our study, the sample
size n is 59, according to the Sturge’s formula [9]

m=1+3.3log,,(n)=1+3.3log,(59) (29)

We can obtain the possible candidates m=6 or 7, in this
study, set m=3, 4, 5, 6, 7, 8.

Then, to transform the scores of the raw data of the
courses into the level of the scores for each item when m=3,
4,5, 6,7, 8, for example, the transformed data for m=6 is
listed in TABLE 3.

And then, we can compute the above three kinds of
fuzzy measures, E-measure; C-measure; M-measure, and
their Choquet integrals, furthermore, we can obtain all of
the estimated overall performance values for m=3, 4, 5, 6, 7,
8.

Next, transform the results into the level of the scores
for each m=3, 4, 5, 6, 7, 8. For example, the transformed
data of four forecasting regression models for m=6 is listed
in TABLE 4.

Finally, by using 5-fold cross validation method to
compute the accuracy of BCT for four methods, the results
are listed in TABLE 1.

From TABLE 1, we know that all of the three Choquet
integral methods are better than the traditional regression
model, Our proposed the Choquet integral methods based
on M-measure is better than other two methods, so our
proposed Choquet integral methods based on M-measure
has the best performance.

TABLE 1 The accuracy of each method for m=3,4, 5,6, 7, 8

Choquet Choquet Choquet
. integral integral integral

m  Regression oy with with

E-measure C-measure M-measure

3 0.5254 0.6102 0.5763 0.6102
4 0.4576 0.4915 0.4237 0.4915
5 0.3051 0.3729 0.3390 0.3729
6 0.3051 0.3559 0.3898 0.3729
7 0.2542 0.3220 0.3390 0.3390
8 0.2542 0.2712 0.2881 0.2881

6. Conclusions and future works

When the sub-tests of a composite test are with

interaction, the performance of the traditional additive scale
method is poor. Non-additive fuzzy measures and fuzzy
integral can be applied to improve this situation. In this
study, a real data set from a junior high school including the
independent variables, test scores of three courses with
interaction, and the dependent variable, junior high school
graduates’ scores of the Basic Competence Test (BCT) are
applied to evaluate the performances of the Choquet
integral regression model with three fuzzy measures,
E-measure, C-measure, M-measure, and traditional multiple
linear regression model. Experimental result shows that
Choquet integral regression model with M-measure has the
best performance, the rest in order are Choquet integral
regression model with C-measure, Choquet integral
regression model with E-measure and the multiple linear
regression model.

The Choquet integral regression model with
M-measure can be used to not only the interval variables
but also the nominal variables. In future we will apply the
proposed Choquet integral regression model based on the
new measure to develop multiple classifier system.
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TABLE 2 Raw data of the scores of 59 students

Student Cl1 C2 C3 BCT Student Cl1 C2 C3 BCT Student CI C2 C3 BCT
1 77 75 79 31 21 53 68 74 11 41 74 86 87 44
2 71 72 78 26 22 56 63 69 21 42 78 83 81 50
3 78 86 86 33 23 70 80 78 31 43 47 58 66 15
4 58 64 68 32 24 51 74 82 49 44 51 60 63 18
5 48 59 65 16 25 61 66 72 33 45 60 65 75 23
6 68 74 77 28 26 67 70 80 35 46 68 68 80 26
7 62 72 84 47 27 59 75 80 27 47 52 60 70 20
8 51 53 65 9 28 53 56 70 22 48 57 65 75 24
9 62 64 76 36 29 56 56 65 6 49 70 66 70 13
10 63 70 81 41 30 52 57 67 15 50 53 68 74 30
11 66 68 75 25 31 74 70 80 35 51 68 68 78 35
12 66 72 80 23 32 56 61 75 22 52 57 60 68 23
13 75 75 85 39 33 62 68 72 29 53 61 62 70 25
14 74 63 69 12 34 86 80 82 35 54 59 70 80 37
15 68 78 85 27 35 63 78 88 31 55 59 62 70 29
16 71 74 80 26 36 56 66 76 21 56 52 64 76 27
17 49 60 69 13 37 77 74 80 42 57 68 70 80 33
18 73 78 84 39 38 73 78 84 24 58 71 76 74 38
19 68 70 74 40 39 63 60 68 17 59 72 66 78 19
20 54 56 62 7 40 53 68 80 31
C1 : physics and chemistry
C2 : biology
C3 : geoscience
BCT : Basic Competence Test
TABLE 3 Transformed data of the scores of 59 students for m=6
Student Cl1 C2 C3 BCT Student Cl1 C2 C3 BCT Student ClI C2 C3 BCT
1 5 4 4 4 21 1 3 3 1 41 5 6 6 6
2 4 4 4 3 22 2 2 2 3 42 5 6 5 6
3 5 6 6 4 23 4 5 4 4 43 1 1 1 2
4 2 2 2 4 24 1 4 5 6 44 1 2 1 2
5 1 2 1 2 25 3 3 3 4 45 2 3 3 3
6 4 4 4 3 26 4 4 5 4 46 4 3 5 3
7 3 4 6 6 27 2 4 5 3 47 1 2 2 2
8 1 1 1 1 28 1 1 2 3 48 2 3 3 3
9 3 2 4 5 29 2 1 1 1 49 4 3 2 1
10 3 4 5 5 30 1 1 2 2 50 1 3 3 4
11 3 3 3 3 31 5 4 5 4 51 4 3 4 4
12 3 4 5 3 32 2 2 3 3 52 2 2 2 3
13 5 4 6 5 33 3 3 3 4 53 3 2 2 3
14 5 2 2 1 34 6 5 5 4 54 2 4 5 5
15 4 5 6 3 35 3 5 6 4 55 2 2 2 4
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16 4 4 5 3 36 2 3 4 3 56 1 2 4 3
17 1 2 2 1 37 5 4 5 5 57 4 4 5 4
18 4 5 6 5 38 4 5 6 3 58 4 5 3 5
19 4 4 3 5 39 3 2 2 2 59 4 3 4 2
20 2 1 1 1 40 1 3 5 4

C1 : physics and chemistry

C2 : biology

C3 : geoscience
BCT : Basic Competence Test

TABLE 4 Transformed data of the estimated scores by each method for m=6

Student R E C M BCT Student R E C M BC

1 4 4 4 4 4 31 4 4 5 5 4
2 4 4 4 4 3 32 3 3 3 3 3
3 5 5 5 5 4 33 3 3 3 3 4
4 3 2 3 3 4 34 5 5 5 5 4
5 2 2 2 2 2 35 5 4 4 4 4
6 4 4 4 4 3 36 4 3 3 3 3
7 4 4 4 4 6 37 4 4 4 4 5
8 2 2 2 2 1 38 5 5 5 5 3
9 3 3 3 3 5 39 3 3 3 3 2
10 4 4 4 4 5 40 4 3 3 3 4
11 3 3 3 3 3 41 5 5 5 5 6
12 4 4 4 4 3 42 5 5 5 5 6
13 4 5 5 5 5 43 2 2 2 2 2
14 3 3 3 3 1 44 2 2 2 2 2
15 5 5 4 5 3 45 3 3 3 3 3
16 4 4 4 4 3 46 4 4 4 4 3
17 3 2 2 2 1 47 3 2 2 2 2
18 5 5 5 5 5 48 3 3 3 3 3
19 4 4 4 4 5 49 3 3 3 3 1
20 2 2 2 2 1 50 3 3 3 3 4
21 3 3 3 3 1 51 3 4 4 4 4
22 3 2 3 3 3 52 3 2 3 3 3
23 4 4 4 4 4 53 2 3 3 3 3
24 3 4 3 3 6 54 4 4 4 4 5
25 3 3 3 3 4 55 2 2 3 2 4
26 4 4 4 4 4 56 3 3 3 3 3
27 4 4 3 4 3 57 4 4 4 4 4
28 2 2 2 2 3 58 4 4 4 4 5
29 2 2 2 2 1 59 4 4 4 4 2
30 2 2 2 2 2

R : estimated transformed -scores of BCT by using the regression model

E : estimated transformed -scores of BCT by using the Choquet integral with E-measure
C : estimated transformed -scores of BCT by using the Choquet integral with C-measure
M : estimated transformed -scores of BCT by using the Choquet integral with M-measure
BCT : classified scores of the Basic Competence Test
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Abstract

It is attractive and worthy to estimate the ambigu-
ity of one existing class structure such that one could
give suggestions to domain experts when and how to
reorganize the original class structure. In this paper
Class Structure Ambiguity (CSA) was proposed to es-
timate the quality of one class structure. To inspect
whether the CSA did tell the quality of class structure
or not, the Pearsons correlation between classification
accuracies achieved by a linear SVM classifier and the
values of CSA were evaluated according to two types of
datasets, one generated randomly and another selected
from the LIBSVM. The experimental results showed
that the CSA did reveal the degree of the ambiguities
among classes. To our knowledge, we were the first to
discuss the problem of class structure ambiguity.

Keywords:
classification, class structure, class ambiguity.

1 Introduction

Classification was well known as a supervised
problem([2, 12, 17, 20]. The class structures usually
were determined in the beginning by some domain experts
manually or automatically [5, 6, 7, 13, 14, 15, 19, 21, 22]
and it was difficult to challenge these experts to verify
whether that structures were well designed or not. There-
fore, it is attractive and worthy to estimate the ambiguity of
one existing class structure, especially when that structure
had been existed for a long time, or when the characteristics
of its contents become diverse as more and more instances
put into it. That is, it is important to know how to evaluate
the ambiguity of class structure such that one could give
suggestions to those domain experts when and how to
reorganize the original class structure.

The classifiers achieving the highest classification accu-
racy for some well known datasets available in the public

domain were regularly proposed and published in the pa-
pers. However, focusing on searching such classifier from
a lot of classifiers was somewhat another kind of over-
fitting problem that found one specific classifier fitting to
that datasets, even with k-fold cross-validation[2]. On the
other hand, the problem of class ambiguity becomes sig-
nificant for the class structures designed only with a few
number of classes in the beginning such that the coming in-
stances might be put to a unsuitable classes for storage by
the distributors or automatic classification software at that
moment. Although there were studies for discussing the
quality of clustering approaches [8, 23], it was seldom to
discuss the class ambiguous problem that how to evaluate
the degree of class ambiguity between two classes, and how
to determine the quality of one existing class structure. In
our previous study [18], the estimation unit using the stan-
dard derivation of the distances from every instances in one
class to the centroid of that class were coarse and it was
only for estimating the ambiguity between two classes, but
not for evaluating the ambiguities for the whole class struc-
ture.

In this paper an approach was proposed to estimate the
quality of one class structure according to the value of Class
Structure Ambiguity (CSA). Generally speaking, the less
ambiguity of one class structure was, the higher accuracy
one classifier could achieve. In other words, the value of
CSA might suppose to be high if the value of classifica-
tion accuracy was low. To inspect whether the CSA did
reveal the ambiguity of structure class or not, it was ex-
pected that the degree of class ambiguity increased as the
value of classification accuracy decreased. To show that ex-
pectation in this paper, the Pearsons correlation [1, 3] be-
tween classification accuracies and the values of CSA was
computed according to two types of datasets, one generated
randomly and another selected from the LIBSVM [4]. The
accuracies achieved by linear SVM classifier derived from
the LIBSVM [4]. Note that linear SVM was well-known
and achieved high accuracy [8, 10, 11].



The experimental results showed that the values of Pear-
sons correlation as described above were above —0.9. This
observation told that the correlation was a negative linear
relationship between accuracy and CSA. That is, the higher
classification accuracies were, the lower the values of CSA
were. In other words, the CSA proposed in this paper did re-
veal the degree of class structure ambiguity. To our knowl-
edge, we were the first to discuss the problem of class struc-
ture ambiguity.

The remainder of this paper is organized as follows. Sec-
tion 2 gives the notations and the computation of C'SA.
Section 3 gives experimental results. Section 4 gives con-
clusions and discussions.

2 Methods

It was expectable that there was a negative linear rela-
tionship between the classification accuracy and the class
structure ambiguity. In other words, the higher classifica-
tion accuracy was, the less class structure ambiguity was.
In this paper the ambiguity of one class structure was mea-
sured according to the summation of the class ambiguities
of all pairs of any two classes within that class structure. To
evaluate whether the measurement of class structure ambi-
guity works or not, the Pearsons correlation [1, 3] was com-
puted between the classification accuracies achieved by lin-
ear SVM classifier from LIBSVM][4] and the values of class
structure ambiguity according to different datasets. Note
that linear SVM classifier was well-known for achieving
high classification accuracy[2]. In the following the nota-
tions used in this paper was given in section 2.1, and then
described the computation of class structure ambiguity in
section 2.2.

2.1 Notations

Let {C1,C5,...,C.} be an actual partition of a data set
Y as
y1,17y1,2; sy yl,nla
Y = Y2,1,Y2,2, - - -y Y2 ng, . (1)
Ye1yYe,2y -+ 5 Yene -

where y;; € R™, i = 1,2,...,¢51 = 1,2,...,n
no= > 1 ni {Yi1. Y2 Yint € Ci3 R is for real
number; m is the dimension in the vector model; c is the
number of classes. Let the centroid(mean) of C; be as
Y = ni Z;’:il yi, and the standard deviation of C;; be S;
as following:

1 &
Si= | = > Wii =TT Wis — T)- )

=1

Let d; 1, (d;i, ar) be the minimum(maximum) of the dis-
tances from all instances in C; to the centroid ¥; as shown
in equation 3(4)

dim = arg mini=12,. . n; A(Yi1, 7). 3

di v =arg mazi=12,..n; AdYii, i) “4)

Let P;(y;) present the ambiguous degree of the [th
instance y;,; of class C; relative to class C;. The value
of P;(y;;) was defined as equation 5 where D, =
max{5S;,d; pr}. The D; was used to exclude the instances
y;, in class C; that were far away from the centroid 7; of
class C;. Note that 0 < P;(y;,;) < 1.

0 Zf d(yj,lam) > Dz
Pi(yja) =4 /P i dy < d(y;n7) < Di
1 Zf d(yj,laE)
5)

The U;(y;,1), as equation 6, was used to filter out the
instances in class C'; that were closer to the centroid of class
C; than that of class C;.

U d(y; %) < d(y;,75)
Ui . = 7 7— ’ ’i 6
(vj,0) { 0 d(y;0,7) > d(y;1,75) ©

2.2 Class Structure Ambiguity (CSA)

To provide a measure how ambiguous one class (C))
relative to another class (C;) is, the Ambiguity Ratio
AR(C;/C) of class C; relative to class C; is defined as
follows:

an(cjcy = CACLC),

EZZI Ui (y;,0)%Pi (yj,1)

j

(7

where CA(C;/C;) =
CA(C;/Cj;) provide the ambiguous degree of class C; to
class C;. That is, the more instances in class C; closer to
the centroid of class C; than that of class C; are, the more
ambiguous of class C; to class C; is. Note that the relation
of C'A is not symmetric[16].

The Class Ambiguity CA(C;), as equation 8, was to
summing up all the ambiguities of the neighbors of class
C; relative to itself while with the weighting proportional to
the ratio of the number of instances n; over that of the other
instances not in class C;.

. Intuitively, the

(&

CAC) =

i#j=1

nj

x AR(C;/C;). ®)

n—mn;

To have an overall estimation of the ambiguities of class
structure ¥ among classes, the Class Structure Ambiguity
CSA(T) sums up the values of CA(C;),1 < i < ¢, with

< dLm



the weighting as the ratio of n; over n. The definition of
CSA(¥) was given as following:

CSA(T) = %C’A(Ci) )

i=1

3 Experimental Results

It is hard to have an objective point to tell whether the
quality of class structure is good or not because even do-
main experts might have different estimations of the quality
of class structure. Hence, the assumption was made in this
paper that the higher classification accuracy one excellent
classifier could achieve, the lower the ambiguous degree of
class structure was.

To estimate the effectiveness of the class structure ambi-
guity (CSA) proposed in this paper, the Pearsons correlation
[1, 3] between the values of classification accuracy achieved
by linear SVM classifier derived from the LIBSVM [4] and
the values of CSA was computed. Pearson’s Correlation
Coefficient can take on the values from -1.0 to 1.0. Where
-1.0 is a perfect negative (inverse) correlation, 0.0 is no cor-
relation, and 1.0 is a perfect positive correlation [1]. Note
that the SVM classifier was known as an excellent classifier
with proper training parameters [8, 10, 11].

There were two types of resources for experiments in this
paper. One type of resources consisted of random-generated
datasets and another consisted of the datasets selected from
the LIBSVM [4]. The details of experimental results were
given in Section 3.1 and Section 3.2, respectively.

3.1 Resources From Randomly Genera-
tion

First of all, to verify the probability of the above assump-
tion, there were datasets generated in terms of different de-
gree of class ambiguity. Each of these datasets contained
only two classes with randomly generated instances as 2-
dimension vectors with normal distribution[3] in each di-
mension, and the centroids of that two classes were M dis-
tance apart in order to simulate the degree of the ambiguity
via the M. That is, the less value of the M was, the higher
degree of class ambiguity was.

There were n instances generated randomly for two
classes in 2-dimension vector space, X -axis and Y -axis, as
normal distribution where S; = S5 = 1, and the centroids
of Cy and Cs were M distance apart. Intuitively, the degree
of class ambiguity between C; and C increased when the
value of M decreased. As shown in Fig.1 and Fig.2, there
were instance distributions for M = 3 and M = 5 and the
instances were marked as ”x” for C or ”+” for C, respec-
tively. It was observable that the degree of class ambiguity
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Figure 1. An example for the distribution of
C4(x) and C3(+) when M = 5.

when M = 3 as in Fig.2 was higher than that when M = 5
as in Fig.1.

For a given constant M, there were 10 datasets generated
in which each class contained 100 instances (n = 100). The
value of accuracy and the value of CSA were based on the
average of these 10 datasets. As shown in Table 1, the value
of Pearson’s Correlation Coefficient were about —0.99 ac-
cording to the values of accuracy and that of CSA while the
value of M ranged from 1 to 6 with an increasing step as
0.25. This result told that there was almost a perfect nega-
tive linear relationship between the values of accuracy and
that of CSA when ¢ = 2 and m = 2, as shown in Fig. 3.
According to the previous assumption that the higher classi-
fication accuracy one excellent classifier could achieve, the
lower the ambiguous degree of class structure was, the value
of CSA proposed in this paper did coincide with the degree
of the ambiguity of class structure. Note that the accuracy
was achieved by inside-testing that used the same dataset
for training and testing.

3.2 Resources from the LIBSVM

The statistics of the resources selected from the LIB-
SVM [4] were shown in Table 2. The resources were se-
lected if both the training and testing set were available and
the number of features under 10000 (m < 10000) due to
the limitation of memory size of our PCs using MATLAB
[9] for computing the values of CSA. The scatter diagram
of accuracy and CSA was shown in Fig.4 and the value
of Pearson’s Correlation Coefficient was —0.47 with all re-
sources. However, as shown in Fig.5, the value changed to
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Figure 2. An example for the distribution of

C4(x) and C2(+) when M = 3.

Table 1. The statistics of Accuracy and CSA

with random-generated Resources.

M Accuracy(%)| CSA

1 1.00 701 030679
2 1.25 )

3 1.50 0 3
4 1.75 0.1869931
3 2.00 0.1622219
6 2.25 ¢ 0.1192407
7] 230 89.4] 0.1099905
8 275 92.1] 0.0796791
9 3.00 93.91 0.0627044
10 325 05.25] 0.0508211
11 3.50 95.8] 0.0425605
12 375 97.25) 0.0281125
13 4.00 07.75] 0.0216393
14 425 08.5] 0.0146757
15 4.50 98.6] 0.0126738
16| 475 09.3] 0.007593
17 5.00 09.5] 0.0068342
18 525 99.6] 0.0051605
19 5.50 09.9] 0.0017158
200 575 09.85] 0.0016424
21 6.00 99.9] 0.0017002

-0.9998177
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Class Structure Ambigulity (CSA)

Figure 3. The scatter diagram of Accuracy
and CSA with random-generated resources.

—0.78 if the values from two datasets, named as "vowel”
and “letter”, were excluded from the evaluation of Pear-
son’s Correlation Coefficient. Generally speaking, the CSA
could reveal the degree of class ambiguity according to the
real datasets from the LIBSVM. Note that the range of the
number of classes ¢ was from 2 to 26 and that of the dimen-
sion m was from 4 to 780 with resources from the LIBSVM
while it was fixed as ¢ = 2 and m = 2 with resources ran-
domly gererated in Section 3.1.

According to above experimental results, the effective-
ness of Class Structure Ambiguity (C'SA) with real-life
datasets seemed not as significant as that with datasets gen-
erated randomly in Section 3.1. It was because the sizes of
training and testing instances seemed too small to have a ro-
bust estimation, hence, the distribution of the instances for
these datasets were quite sparse, especially when the dimen-
sion was high. Considering the dataset ’vowel”, for exam-
ple, the number c of classes is 11 and the dimension m is 10
while the dataset “vowel” contained only 528 instances for
training and 462 instance for testing. On the other hand, the
dataset “letter”, ¢ = 26 and m = 16, contained 15, 000 in-
stances for training and 5000 ones for testing while achiev-
ing the value of CSA as small as 0.078419 but the value
of accuracy as low as 69.88%, which was supposed to be
higher than that.

4. Conclusions and Discussions

In this paper Class Structure Ambiguity(CSA) was pro-
posed and evaluated by inspecting the Pearsons correlation
between classification accuracy achieved by linear SVM



Table 2. The statistics of the resources from
the LIBSVM[4].

class |training| testing | feature

name (=0) e e (=m) accuracy(%)| CSA

ala 1.605] 30956 123 0.204466
2 123 0.214995
123 0.201449
ada 4781 : 123 0.196471
aSa 6.414| 2614 123 0.200164
aba 11.220] 21341 123 0.200804
ala 16.100] 16461 123 0.19771
a8z 22,696 0865 123 0.199223
Oz 32,561 16281 123 84.9456| 0.199804
49990 91701 22 01.7973| 0.248187
1,000 2175 60 85.2414| 0.205029
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300 0.11469
300 0.110344
39861 300 0.114258
32561 300 0.12
25057 300 0.12
14951 300 0.13
1186 180 0.047316
19705 50 0.224589
19705 50 0.168187
‘ 19705 100 0.248261
43,500 14500 9 0.029769
10 60,000{ 10000 780 0.043286
10 7.291 2007 256 0.03
11 528 462 10 0.101382
etter 26 15,000 5000 16 0.078419
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Figure 4. The scatter diagram of Accuracy
and CSA for LIBSVM datasets.
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Figure 5. The scatter diagram of Accuracy
and CSA for LIBSVM datasets excluding
”vowel” and ”letter”.

and the values of CSA according to experiments with two
types of datasets as randomly-generated and selected from
LIBSVM[4]. The experimental results showed that the cor-
relations described above were a negative linear relationship
between accuracy and CSA with both of two types datasets.
That is, the higher classification accuracies were, the lower
the values of CSA were. The observations told that the eval-
uation of CSA proposed in this paper did reveal the ambi-
guities among classes. To our knowledge, we are the first
to address the problem of class ambiguity for classification
problems although there were studies to discuss the quality
(purity) of clusters [23].

There are still many works for further study. First of all,
it is too optimistic to assume that the distribution of the in-
stances in one class in high dimension vector space is as
normal distribution. Indeed, it needs a lot of cost to have
instances with class-label from the real world. Therefore,
the distribution of instances for one class in high dimension
could be very sparse and should not suppose to be normal
distribution. On the other hand, how to decide the suitable
number of instances to have the statistic as normal distribu-
tion for a given m dimension is hard to predict. Secondly,
the classifier used in this paper was linear SVM. Therefore,
what the measures should be with different classifiers is un-
known. Thirdly, the class structure ambiguity discussed in
this paper was only based on the relationship between two
classes. It might be more reasonable to take all the instances
of the neighboring classes into consideration but not just
two classes. Finally, it is desirable to estimate the degree of
class structure ambiguity not only for flat class structure but



for hierarchical one. It is our future works to tackle these
problems as described above.
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