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壹、前言 

現有之教育測驗理論，包含試題反應理論，均建構在可加性機率測度及魯貝格積分(Lebesgue 
Integral)理論基礎上，機率測度理論是一種古典測度理論，其基本理論規定任何隨機事件之機

率為其機率密度之可加測度，這樣的規定最大的好處在於計算簡便，但「機率之可加性運算」

顯然必須滿足；「不同機率密度間無交互作用之基本假設」，然而在諸多實際應用上並不能完全

適用，因而有其他不同之非可加性測度應運而生，例如可能性測度(Possibility measure)、似真

性測度(Plausibility measure) 、信任性測度(belief measure)、必然性測度(Necessity measure)等，

事實上，上述四種非可加性測度及眾所周知之機率測度都是單調性測度之特例，由於單調性測

度之單調性條件甚多，同時確定並不容易，有其不明確性，故菅野道夫(Sugeno,)於 1974 年在

提出λ測度之同時，首先將單調性測度稱為模糊測度，繼而，依循菅野道夫之說法，王正元與

喬治‧克里爾(Zhenyuan Wang & George J. Klir) 於 1992 年出版第一本有關單調性測度之書籍，

將其命名為「模糊測度理論(Fuzzy Measure Theory)」，該模糊測度理論是古典測度理論之推廣

理論，然而單調性測度發展之初，只討論明確數而非模糊數，事實上不宜稱為模糊測度，特別

是目前單調性測度之發展，已由明確數擴張至模糊數了，則關於模糊數之單調性測度可稱為模

糊化單調性測度(Fuzzified monotone measure)，若將單調性測度仍稱為模糊測度，則關於模糊數

之模糊測度就有模糊不清之議，加之非單調性測度也已被學界引進，故而王正元與喬治‧克里

爾於 2009 年出版之模糊測度理論擴充版已更名為「廣義測度理論(Generalized Measure 
Theory)」，由於目前學界所熟悉且容易溝通之名詞，仍稱之為模糊測度，故本研究計畫之單調

性測度亦稱為模糊測度，另外單調性測度必須配合單調性積分才能竟其工，換言之、魯貝格積

分必須相應擴張為單調性積分。此外，對應於單調性測度稱為模糊測度，則單調性積分也常被

稱為模糊積分。第一個提出改進魯貝格積分之單調性積分者，應是義大利數學家 魏塔利

(Giusseppe Vitali, 1925,1997), 他於 1925 以義大利文發表，延遲至 1997 年才被翻譯成英文方為

人知，其後被法國數學家薛奎爾(Gustave Choquet)重新發現於 1954 年再度提出，經二十餘年之

澎勃發展，學界已習慣稱之為 Choquet 積分，故本研究計畫亦稱為 Choquet 積分。雖然菅野道

夫(Sugeno,)於 1974 年也提出新的模糊積分，稱為 Sugeno 積分，與其提出之λ測度廣為工程、

管理等學界應用，但 Sugeno 積分既不及 Choquet 積分之靈敏，且非魯貝格積分之推廣積分方

法，故暫時未列入本研究計畫之內容。Sugeno(1974)將模糊測度分為次可加測度，可加測度、

及超可加測度，三種，主要因為其所提出之λ測度隨λ值而異，只有該三種可能，而目前學界

也以為模糊測度只有該三種分類，本人於 2006 年首先指出，實務所須，單調性混合模糊測度

是不可忽略的，另指出 Sugeno 之λ測度與 Zadeh(1978)之可能性測度均為單值模糊測度，適用

性有限，有必要發展具有上述四種類別之多值模糊測度，並於 2007 年起，陸續提出系列具上

述改良性值之多值模糊測度族。除可提供工程、管理等學界應用外，並希望能兼顧理論與應用

之進一步發展，且能轉化應用於教育測驗領域。 

 

貳、研究目的與方法 

本研究計畫為三年期研究計畫之第一年計畫；「模糊測度 Choquet 積分應用於教育測驗分析

之研究(I)」本年度計畫主要在探討「應用作者所提供之多種新模糊測度 Choquet 積分法來建立

更具預測效力之教育測驗預測模式，並發展應用系統程式」 
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其中包含： 

     一、多值模糊測度數學理論之探究： 

1. 作者提出 L 測度，並探究其基本數理性質 

2. 作者提出改進之完備 L 測度，並探究其基本數理性質 

3. 作者提出新測度δ測度，並探究其基本數理性質 

4. 作者提出基於 L 測度與δ測度之組合多值模糊測度，並探究其基本數理性

質 

5. 作者等提出分組資料之 C 測度，並探究其基本性質 

6. 作者提出γ模糊密度(γ支撐)，並驗證其優於 C 支撐與 V 支撐 

     二、電腦分析系統程式設計 

1. 基於γ支撐之 L 測度 Choquet 積分迴歸預測模式之電腦分析系統程式設計 

2. 基於γ支撐之完備 L 測度 Choquet 積分迴歸預測模式之電腦分析系統程式

設計 

3. 基於γ支撐之δ測度 Choquet 積分迴歸預測模式之電腦分析系統程式設計 

4. 基於γ支撐之 L(δ)組合多值模糊測度 Choquet 積分迴歸預測模式之電腦分

析系統程式設計 

5. 基於γ支撐之 C 測度 Choquet 積分迴歸預測模式之電腦分析系統程式設計 

         三、兩組教育測驗評量預測實證資料 

               1.苗栗某中學 60 位學生以其國中數學、理化，生物，及地球科學之畢業成績預

測其國中基本能力測驗之自然科成績 

               2. 臺中某國民小學 128 位學生之上臂三頭肌、上臂二頭肌、肩胛下、腸棘上等

四處的皮脂厚度推估出來的體脂肪率預測體脂肪計體脂肪率。 

四、以預測量均方誤差為比較準則，進行上述資料之各種預測模式之 k 折交互驗證法

( K-Folds Cross Validation Method) 比較研究 

    預測模式列示於下： 

1. 複迴歸預測模式 

2. 脊迴歸預測模式 
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3. 基於γ支撐之 Zadeh  P 測度 Choquet 積分迴歸預測模式 

4. 基於γ支撐之 Sugeno  λ測度 Choquet 積分迴歸預測模式 

5. 基於γ支撐之 L 測度 Choquet 積分迴歸預測模式 

6. 基於γ支撐之完備 L 測度 Choquet 積分迴歸預測模式 

7. 基於γ支撐之δ測度 Choquet 積分迴歸預測模式 

8. 基於γ支撐之 L(δ)組合多值模糊測度 Choquet 積分迴歸預測模式 

9. 基於γ支撐之 C 測度 Choquet 積分迴歸預測模式 

叁、研究成果與發表論文目錄 

一、. 提出 L 測度之重要數理性質及其 Choquet 積分迴歸預測模式 

   (一) 提出 L 測度之重要數理性質如下： 

1. L 測度滿足有界性能與單調性是以模糊測度 

2. L 測度是決定係數 L 在定義域[ )0 , ∞ 上之連續遞增函數 

3. L 測度為多值模糊測度， [ )0 ,L ∈ ∞ ，不同之決定係數 L 值決定了不同之模

糊測度，換言之，L 測度有無限多模糊測度解，且其公式解具封閉型式 

4. L=0 時，L 測度恰好為 Zadeh 之 P 測度 

5. L 測度可為混合模糊測度、次可加模糊測度，及超可加模糊測度 

(二)完成基於γ支撐之 L 測度 Choquet 積分迴歸預測模式之電腦分析系統程式設計 

(三) 發表 EI 級論文兩篇如下驗證了 L 測度 Choquet 積分迴歸預測模式優於複迴歸預測

模式、脊迴歸預測模式、基於γ支撐之 Zadeh  P 測度 Choquet 積分迴歸預測模式、 

及基於γ支撐之 Sugeno 之λ測度 Choquet 積分迴歸預測模式。 

( 見附漸次出席國際會議發表論文及心得報告) 

1. .Hsiang-Chuan Liu, Yu-Chieh Tu, Wen-Chih Lin, and Chin-Chun Chen (2008). 

Choquet integral regression model based on L-Measure and γ-Support. Proceedings of 

2008 International Conference on Wavelet Analysis and Pattern Recognition. (Hong 

Kong, 30-31, Aug. 2008.) Volume: 2, pp.777-782. ISBN: 978-1-4244-2238-8. (EI 

paper) 

2. Hsiang-Chuan Liu, Yu-Du Jheng, Guey-Shya Chen and Bai-Cheng Jeng. (2008) 
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            Choquet Integral Logistic Regression Algorithms Based on L-Measure and γ-Support. 
Proceedings of 2008 International Conference on Wavelet Analysis and Pattern 
Recognition. (Hong Kong, 30-31, Aug. 2008.) .Volume: 2, pp.771-776. ISBN: 
978-1-4244-2238-8. INSPEC Accession Number: 10299006. (EI paper) 

 

    二、. 提出完備 L 測度之重要數理性質及其 Choquet 積分迴歸預測模式 

 (一) 提出完備 L 測度之重要數理性質如下： 

1. 在既定之模糊密度條件下，提出最大模糊測度；B 測度，及完備測度定義，並

指出 Sugeno 之λ測度、Zadeh 之 P 測度、及 L 測度均未包含 B 測度，換言之，

λ測度、 P 測度、及 L 測度均非完備測度。 

2. 完備 L 測度滿足有界性能與單調性是以模糊測度 

3. 完備 L 測度是決定係數 L 在定義域[ )0 , ∞ 上之連續遞增函數 

4. 完備 L 測度為多值模糊測度， [ )0 ,L ∈ ∞ ，不同之決定係數 L 值決定了不同

之模糊測度，換言之，L 測度有無限多模糊測度解，且其公式解具封閉型式 

5. 完備 L=0 時，完備 L 測度恰好為最小測度；Zadeh 之 P 測度 

6. L → ∞ 時，完備 L 測度恰好為最大測度；B 測度 

7. 完備 L 測度可為混合模糊測度、次可加模糊測度，及超可加模糊測度 

(二)完成基於γ支撐之完備L測度Choquet積分迴歸預測模式之電腦分析系統程式設計 

(三) 發表 EI 級論文同時被刊登於專書如下，驗證了完備 L 測度 Choquet 積分迴歸預測

模式優於複迴歸預測模式、脊迴歸預測模式、Zadeh  P 測度 Choquet 積分迴歸預

測模式、Sugeno 之λ測度 Choquet 積分迴歸預測模式、及 L 測度 Choquet 積分迴

歸預測模式。 

1. Hsiang-Chuan Liu, “A theoretical approach to the completed L-fuzzy 
measure”, Conference Proceedings of 2009 International Institute of Applied 
Statistics Studies (2009IIASS), July 24-28 2009.Qindao, China, pp. 1121-1124, 2009. 
ISBN:978-0-9806057-4-7. (EI paper) 

2. Hsiang-Chuan Liu (2009). “A theoretical approach to the completed L-fuzzy measure”, 
Quantitative Analysis Techology and Related Engineering Applications, pp. 1121-1124, 
2009, AUSSINO ACADEMIC PUBLISH HOUSE Sydney Australia, ZHU Koulai & 
Henry ZHANG, ISBN:978-0-9806057-4-7.  
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三、. 提出 δ測度之重要數理性質及其 Choquet 積分迴歸預測模式 

  (一) 提出δ測度之重要數理性質如下： 

1. δ測度滿足有界性能與單調性是以模糊測度 

2. δ測度是決定係數δ在定義域[ ]1, 1− 上之連續遞增函數 

3. δ測度為多值模糊測度， [ ]1, 1δ ∈ − ，不同之決定係數δ值決定了不同之模

糊測度，換言之，δ測度有無限多模糊測度解，且其公式解具封閉型式 

4. δ=-1 時，δ測度恰好為 Zadeh 之 P 測度 

5. δ=0 時，δ測度恰好為可加測度，當模糊密度之和為 1 時，Sugeno 之λ測度

即可加測度，此時δ測度恰好亦為λ測度，並指出 L 測度及完備 L 測度均未包

含可加測度。 

6. 1 0δ− ≤ < 時，δ測度為次可加測度，0 1δ< ≤ 時，δ測度為超可加測度 

7. δ測度不可能為混合模糊測度及完備測度。 

(二)完成基於γ支撐之δ測度 Choquet 積分迴歸預測模式之電腦分析系統程式設計 

(三) 發表 EI 級期刊論文如下，驗證了δ測度 Choquet 積分迴歸預測模式優於複迴歸預

測模式、脊迴歸預測模式、Zadeh  P 測度 Choquet 積分迴歸預測模式、 

及 Sugeno 之λ測度 Choquet 積分迴歸預測模式。 

Hsiang-Chuan Liu, Der-Bang Wu, Yu-Du Jheng and Tian-Wei Sheu (2009). 
“Theory of Multivalent Delta-Fuzzy Measures and its Application”, WSEAS 
TRANSACTION ON INTERNATIONAL SCIENCE AND APPLICATION ,Vol. 6, No. 
6 1061-1070, June 2009. ISSN: 1790-0832. (EI Journal) 
 

四、. 提出基於 L 測度與δ測度之組合多值模糊測度之重要數理性質及其 Choquet 積分迴歸

預測模式 

(一) 提出基於 L 測度與δ測度之組合多值模糊測度；L(δ)測度之重要數理性質如下： 

1. L(δ)測度滿足有界性能與單調性是以模糊測度 

2. L(δ)測度是決定係數 L在定義域[ )1,− ∞ 上之連續遞增函數 

3. L(δ)測度為多值模糊測度， [ )1,L ∈ − ∞ ，不同之決定係數 L 值決定了不同

之模糊測度，換言之，L(δ)測度有無限多模糊測度解，且其公式解具封閉型
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式，並指示δ測度之無限多模糊測度解，遠少於 L 測度，及 L(δ)測度之無限

多模糊測度解，而 L(δ)測度之無限多模糊測度解亦多於與 L 測度之無限多模

糊測度解 

4. L=-1 時，L(δ)測度恰好為 Zadeh 之 P 測度 

5. L=0 時，L(δ)測度恰好為可加測度，當模糊密度之和為 1 時，Sugeno 之λ測

度即可加測度，此時 L(δ)測度恰好亦為λ測度。 

6. 1 0L− ≤ < 時，δ測度為次可加測度，0 L< < ∞ 時，L(δ)測度為超可加

測度 

7. L(δ)測度不可能為混合模糊測度及完備測度。 

(二)完成基於γ支撐之 L(δ)測度 Choquet 積分迴歸預測模式之電腦分析系統程式設計 

(三) 發表 EI 級期刊論文如下，驗證了 L(δ)測度 Choquet 積分迴歸預測模式優於複迴

歸預測模式、脊迴歸預測模式、Zadeh  P 測度 Choquet 積分迴歸預測模式、Sugeno 

之λ測度 Choquet 積分迴歸預測模式、L 測度 Choquet 積分迴歸預測模式 

及δ測度 Choquet 積分迴歸預測模式。 

Hsiang-Chuan Liu, Chin-Chun Chen, Der-Bang Wu, and Tian-Wei Sheu (2009). 
“Theory and Application of the Composed Fuzzy Measure of L-Measure and 
Delta-Measures”, WSEAS TRANSACTION ON INTERNATIONAL SCIENCE 
AND CONTRAL , Issue 8. Vol. 4, pp. 359-368, Augest 2009. ISSN: 1991-8763. 
(EI Journal) 

 

五、. 提出基於 C 測度與δ測度之組合多值模糊測度之重要數理性質及其 Choquet 積分迴歸

預測模式 

(一) 提出基於 C 測度之重要性質如下： 

1. 基於複雜度之 C 測度滿足有界性能與單調性是以模糊測度 

2. C 測度適合於分組資料之模糊測度度即可加測度，此時 L(δ)測度恰好亦為λ測

度。 

 (二)完成了 C 測度 Choquet 積分預測模式之電腦分析系統程式設計 

(三) 發表 SCI 級期刊論文如下，驗證了 C 測度 Choquet 積分預測模式優於複迴歸預測模

式、脊迴歸預測模式、Zadeh  P 測度 Choquet 積分迴歸預測模式、Sugeno 之λ測度

Choquet 積分迴歸預測模式、 
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Jiunn-I Shieh, Hsin-Hong Wu, Hsiang-Chuan Liu., (2009). Applying complexity-based 
Choquet integral to evaluate students’ performance. Expert Systems with Applications, 36 
(2009), 5100-5106. ISSN: 0957-4174. (SCI, impact factor; 2.596) 

 

六、 提出基於 Pearson 相關係數之γ模糊密度(γ支撐)，並驗證其優於 C 支撐與 V 支撐發

表論文( 同一之論文) 如下 

1. .Hsiang-Chuan Liu, Yu-Chieh Tu, Wen-Chih Lin, and Chin-Chun Chen (2008). 

Choquet integral regression model based on L-Measure and γ-Support. Proceedings of 

2008 International Conference on Wavelet Analysis and Pattern Recognition. (Hong 

Kong, 30-31, Aug. 2008.) Volume: 2, pp.777-782. ISBN: 978-1-4244-2238-8. (EI 

paper) 

2. Hsiang-Chuan Liu, Yu-Du Jheng, Guey-Shya Chen and Bai-Cheng Jeng. (2008) 
            Choquet Integral Logistic Regression Algorithms Based on L-Measure and γ-Support. 

Proceedings of 2008 International Conference on Wavelet Analysis and Pattern 
Recognition. (Hong Kong, 30-31, Aug. 2008.) .Volume: 2, pp.771-776. ISBN: 
978-1-4244-2238-8. INSPEC Accession Number: 10299006. (EI paper) 

 

四、結論 

    本研究計畫第一年度經數理分析之探討，提出一種有效之模糊密度；γ支撐，四種改善之多

值模糊測度及一種分組資料可用之模糊測度，同時完成了基於γ支撐之上述各種模糊測度之

Choquet 積分迴歸模式，包含複迴歸預測模式及脊迴歸預測模式之電腦分析系統程式設計、進行

兩組教育測驗資料之五折交互驗證比較研究，各種模糊測度之 Choquet 積分迴歸模式，均獲得

有效之成果，並發表了 1 篇 SCI 期刊論文，2 篇 EI 期刊論文，及 3 篇 EI 研討會論文。 

 

五、附錄：發表論文 
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a b s t r a c t

The weighted arithmetic mean and the regression methods are the most often used operators to aggre-
gate criteria in decision making problems with the assumption that there are no interactions among cri-
teria. When interactions among criteria exist, the discrete Choquet integral is proved to be an adequate
aggregation operator by further taking into accounts the interactions. In this study, we propose a com-
plexity-based method to construct fuzzy measures needed by the discrete Choquet integral and a real
data set is analyzed. The advantage of the complexity-based method is that no population probability
is to be estimated such that the error of estimating the population probability is reduced. Four methods,
including weighted arithmetic method, regression-based method, the discrete Choquet integral with the
entropy-based method, and our proposed discrete Choquet integral with the complexity-based method,
are used in this study to evaluate the students’ performance based on a Basic Competence Test. The
results show that the students’ overall performance evaluated by our proposed discrete Choquet integral
with the complexity-based method is the best among the four methods when the interactions among cri-
teria exist.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The most often used operator to aggregate criteria in decision
making problems is the classical weighted arithmetic mean (Fish-
burn, 1970). In many practical applications the decision criteria
present some interaction. However, the problem of modeling such
an interaction remains a difficult question, which is often over-
looked (Domingo & Torra, 2002). The reason is that practitioners
are lack of suitable tools to deal with the interactions such that cri-
teria are assumed to be independent and exhaustive. This comes
primarily from the absence of a precise definition of interactions
as well as the complexity and difficulty of identifying the interac-
tion phenomena among criteria. It is known that the mutual inde-
pendence among the criteria is a necessary condition for
aggregation operator to be additive. That is, if some criteria are
preferentially dependent with the others, then no additive aggre-
gation operator can model the preferences of the decision maker
(Domingo & Torra, 2002).

The weighted arithmetic mean and regression method are un-
able to overcome the undesirable phenomenon of dependence. In
contrast, the Choquet integral takes into account the interactions
among criteria. In addition, there is a key issue unsolved in the
application of fuzzy integral with the determination of density

values to decide the fuzzy measures in the fusion process. In this
study, entropy-based method and our proposed complexity-based
method to construct the fuzzy measures in the discrete Choquet
integral are discussed.

This paper is outlined as follows: Section 2 reviews weighting
methods, fuzzy measures, and discrete Choquet integrals with
two different constructs in fuzzy measures. A procedure of using
Choquet integral is provided in Section 3. A case study of applying
the weighted arithmetic mean method, regression method, Cho-
quet integral with the entropy-based method, and our proposed
Choquet integral with the complexity-based method is performed
in Section 4 to analyze the students’ overall performance on Basic
Competence Test when the interactions exist. Finally, conclusions
are summarized in Section 5.

2. Weighting methods, fuzzy measures, and discrete Choquet
integral

The classical weighted arithmetic mean method is the most
commonly used operator to aggregate criteria in decision making
problems without further considering the interactions among cri-
teria. The regression method is to maximize the linear relation
among the criteria without further taking into considering the
interactions among criteria. On the contrary, the discrete Choquet
integral is proved to be an adequate aggregation operator that
extends the weighted arithmetic mean method by taking into

0957-4174/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2008.06.003
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consideration the interactions among criteria. The philosophy of
the Choquet integral was first introduced in capacity theory (Cho-
quet, 1953) and used as a (fuzzy) integral with respect to a fuzzy
measure proposed by Höhle (1982) and then rediscovered later
by Murofushi and Sugeno (1989, 1991).

Choquet integral is defined to integrate functions with respect
to the fuzzy measures (Murofushi & Sugeno, 1989). Fuzzy integrals
are very useful for global evaluation models but the number of
parameters of fuzzy measures is large. The definitions of fuzzy
measures and Choquet integrals are as follows (Murofushi & Su-
geno, 1989):

Definition 1. Let N be a finite set of criteria. A discrete fuzzy
measure on N is a set function v: 2N ? [0,1] which satisfies the
following axioms:

(i) v(/) = 0, v(N) = 1 (boundary conditions);
(ii) A # B implies vðAÞ 6 vðBÞ (monotonicity) for A, B e 2N.

For each subset of criteria S # N, v(S) can be interpreted as the
weight of the coalition S.

Definition 2. Let v be a fuzzy measure on N = {1, 2, . . ., n}. The dis-
crete Choquet integral of function x: N ? R with respect to v is
defined by CvðxÞ ¼

Pn
i¼1xðiÞ½vðAðiÞÞ � vðAðiþ1ÞÞ�, where ð�Þ indicates a

permutation on N such that xð1Þ 6 xð2Þ 6 � � � 6 xðnÞ. Also
AðiÞ ¼ fðiÞ; . . . ; ðnÞg, and Aðnþ1Þ ¼ /. For instance, if x1 6 x3 6 x2,
then rank x1, x2, x3 from the smallest one to the largest one.
The result is x(1) = x1, x(2) = x3, x(3) = x2. Finally, Cvðx1; x2; x3Þ ¼ x1�
½vðfð1Þ; ð2Þ; ð3ÞgÞ� þ ðx3 � x1Þ � ½vfð2Þ; ð3Þg� þ ðx2 � x3Þ � ½mðfð3ÞgÞ�.

The discrete Choquet integral takes into account the interaction
by means of the fuzzy measure v. If the criteria are independent,
the fuzzy measure is additive. Then, the discrete Choquet integral
coincide with the weighted arithmetic mean method. That is,
CvðxÞ ¼

Pn
i¼1vðfigÞ � xi, x e Rn. For example, there are five students

and three courses (D1, D2, and D3). Assume the raw data and a fuzzy
measure m on each subset are in Tables 1 and 2, respectively. In
Table 2, (0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1), (0,1,1),
and (1,1,1) represent empty set, {D1}, {D2}, {D1,D2}, {D3}, {D1,D3},
{D2,D3}, and {D1,D2,D3}, respectively. For the first student, the
raw scores are 70, 81, and 75. First, rank the scores from the small-
est to the largest, i.e., 70, 75, and 81. Then, the overall performance

evaluated by Choquet integral is computed by 70 � m({D1,D2,D3}) +
(75 � 70) � m({D2, D3}) + (81 � 75) � m({D2}) = 70 � 1 + 5 � 0.5 + 6 �
0.1667 = 73.5002. By the same philosophy, the overall performance
values of the second, third, fourth, and fifth students evaluated by
Choquet integral are 77.6667, 74.6667, 81.0002, and 77.8334,
respectively.

To evaluate a discrete Choquet integral, we need a fuzzy mea-
sure first. How to find a suitable fuzzy measure becomes an issue.
To be a fuzzy measure, the measure needs to satisfy the axioms of
the fuzzy measure. We note that entropy measure and complexity-
based measure are qualified to be fuzzy measures. The former one
is proposed by Kojadinovic (2004) and the latter one is proposed in
our study.

To measure the uncertainty of a random variable, the concept of
entropy was introduced (Shannon, 1948). The basic idea is that an
item with large entropy in its ratings is more important in a user’s
interest than an item with small entropy. Based on this idea, an en-
tropy-based method is in the following (Yu, Wen, Xu, & Ester,
2001): Given a discrete random variable A, let pA be the probability
of A, then define entropy of A to be h(A) = �

P
pA log2 pA, where

pA > 0. With the similar formula, let B be a discrete random vector
which contains at least two discrete random variables, then gener-
alize this idea to a random vector and call pB be the joint probabil-
ity and h(B) the joint entropy. By using the idea of joint entropy to
calculate the entropy of the subsets of criteria of N, define the fuzzy
measure m1 as the following: m1ðSÞ ¼ hðSÞ

hðNÞ for all S # N (Kojadinovic,
2004). By using the idea of entropy, we need to decide the number
of level to be used to classify the raw data into the level of the score
for each criterion. For example, let the number of level to be used
be 2 and S contain only two random variables X1 and X2. In addi-
tional, assume the raw data are in Table 3.

The raw data in Table 3 can be classified into Table 4 by histo-
gram equalization of ‘‘hist.m” program of Matlab 7.0 for each ran-
dom variable. To generate the complete information of fuzzy
measure m1, first to compute h(N). A joint pattern (1,2) means that
X1 = 1 and X2 = 2, and (2,2) means that X1 = 2 and X2 = 2. There are
3 of pattern (1,2) and 2 of pattern (2,2). Thus, pS(X1 = 1, X2 = 2) = 3/
5 = 0.6, and pS(X1 = 2, X2 = 2) = 2/5 = 0.4. Therefore, hðNÞ ¼
�0:6 � log2ð0:6Þ � 0:4 � log2ð0:4Þ ¼ 0:9710. Next, h(S) is computed
when S = X1 and X2, i.e., h(X1) and h(X2). In this case, there are 3 pat-
tern ‘‘1” and 2 pattern ‘‘2” in X1. From Table 4, pX1 ðX1 ¼ 1Þ ¼ 3=5 ¼
0:6, pX1 ðX1 ¼ 2Þ ¼ 2=5 ¼ 0:4, and hðX1Þ ¼ �0:6 � log2ð0:6Þ � 0:4�
log2ð0:4Þ ¼ 0:9710. In contrast to X1, there are 5 pattern ‘‘2” in
X2. From Table 4, pX2 ðX2 ¼ 1Þ ¼ 0=5 ¼ 0, pX2 ðX2 ¼ 2Þ ¼ 5=5 ¼ 1,

Table 2
A fuzzy measure used to demonstrate computation of the overall performance by
Choquet integral

D1 D2 D3 Fuzzy measure m

0 0 0 0
1 0 0 0.1667
0 1 0 0.1667
1 1 0 0.5
0 0 1 0.1667
1 0 1 0.5
0 1 1 0.5
1 1 1 1

Table 1
Example of the raw data used to demonstrate computation of the overall performance
by Choquet integral

Student D1 D2 D3

1 70 81 75
2 70 85 86
3 65 85 84
4 75 91 85
5 75 80 82

Table 3
Example of the raw data used to construct fuzzy measures based on entropy and
complexity methods

Student X1 X2

1 70 81
2 70 85
3 65 85
4 75 91
5 75 80

Table 4
The level of the score for each criterion classified from the raw data in Table 3 when
the number of level is two

Student X1 X2

1 1 2
2 1 2
3 1 2
4 2 2
5 2 2

Jiunn-I Shieh et al. / Expert Systems with Applications 36 (2009) 5100–5106 5101



and hðX2Þ ¼ �1 � log2ð1Þ ¼ 0. By m1ðSÞ ¼ hðSÞ
hðNÞ for all S # N, the fuzzy

measure m1 is completely defined by the following Table 5.
Although our example is to compute the fuzzy measure of a ran-
dom vector with two discrete random variables, the entropy meth-
od is also easy to compute the fuzzy measure of a random vector
with more than two discrete random variables. However, the en-
tropy-based weighting scheme might take the risk to estimate
the probability for each criterion. If the sample size is small, it often
makes a larger error to estimate the population probability. Under
such circumstances, we propose a complexity method to improve
the prediction.

The basic concept of complexity is that the more substructures
in a system, the more complex the system. This concept is in agree-
ment with our intuitive understanding that it is the connectedness
of the system elements that matters more. Thus, the more con-
nected the system, the higher the number of substructures in it.
Then, it is a good reason to count how many substructures in a
structure (Bonchev & Rouvray, 2003). The complexity C of a dis-
crete random variable X is defined to be the function which counts
the number of distinct patterns in X. The complexity C of n discrete
random variables X1;X2; . . . ;Xn is defined as the function which
counts the number of distinct patterns in joint pattern of
X1,X2, . . . ,Xn. For a finite number of random variables X1,X2, . . . ,Xn,
the complexity is finite. Thus, C(X1,X2, . . . ,Xn) always can be nor-
malized to be 1. Moreover, it is very natural to defined C(/) to be
zero, where / is an empty set. By using the idea of complexity C
to calculate the complexity of the subsets of criteria of N, define
C1 as the following: C1ðSÞ ¼ CðSÞ

CðNÞ for all S # N. It is easy to check that
C1 has property of monotonicity. That is, X # Y implies
C1ðXÞ 6 C1ðYÞ for X;Y 2 2N . In addition, C1(/) = 0. By the definition
of fuzzy measure, C1 is a fuzzy measure.

Let the number of level to be 2 and S contain only two random
variables X1 and X2. By using the raw data from Table 3, the raw
data can be classified by histogram equalization of ‘‘hist.m” pro-
gram of Matlab 7.0 for each random variable, as shown in Table
4. To generate the complete information of fuzzy measure m1, com-
pute C(N). From Table 4, there are two different joint patterns, i.e.,
(1,2) and (2,2). Thus, the complexity of N is 2. Next, C(S) is com-
puted when S = X1 and X2. That is, compute C(X1) and C(X2). There
are two different patterns in X1. Then, C(X1) = 2. Moreover, there
are only 1 pattern in X2, i.e., C(X2) = 1. By C1ðSÞ ¼ CðSÞ

CðNÞ for all

S # N, the fuzzy measure C1 is completely defined by the following
Table 6. Although our example is to compute the fuzzy measure of
a random vector with two discrete random variables, the complex-
ity method is also quite easy to compute the fuzzy measure of a
random vector with more than two discrete random variables.

In this study, four methods, including classical weighted arith-
metic mean method, regression-based method, the Choquet inte-
gral with the entropy method and our proposed Choquet integral
with the complexity-based method, are applied in a case study of
a Basic Competence Test to evaluate the students’ performance.

3. A procedure of using the discrete Choquet integral

A five-step procedure of applying the Choquet integral based on
Calvo, Kolesarova, Komornikova, and Mesiar (2001) is as follows:

Step 1. Decide the range of level to be used to classify the raw
data into the level of the score for each criterion in our study
by Scott’s rule and Sturge’s formula. Assume that m is the num-
ber of the level of scores and m = 2, 3, 4, 5, 6, 7, 8, 9 are the range
in our study. Then, transform the scores of the raw data into the
level of the scores for each item when m = 2, 3, 4, 5, 6, 7, 8, 9.
Step 2: Check the mutual interaction and the strength of inter-
action among criteria. First, calculate the Chi-square divergence
between a pair of criteria, and use statistical test to determine if
there is any mutual interaction among the criteria for each
m = 2, 3, 4, 5, 6, 7, 8, 9. For the analysis of correlation, we chose
Cramer’s coefficients to determine if there is strong mutual
interaction among criteria. Compute Cramer’s coefficients for
each m = 2, 3, 4, 5, 6, 7, 8, 9. Note that if there is no interaction
among criteria, we expect that the accuracy of the Choquet inte-
gral method is as well as that of weighted arithmetic mean
method.
Step 3. For each m make the following calculations: (1) use
credit hours to get the weight for each course; (2) use regres-
sion method to get the weight for each course; (3) by using
the results from Step 2, compute fuzzy measures based on
entropy and joint entropy for each subset of all courses. Then,
the importance for each subset is resolved; (4) use the results
from Step 2, compute fuzzy measures based on the complexity
for each subset of all courses. Thus, the importance for each
subset is available.
Step 4: Calculate the weighted arithmetic mean and regression
methods among all courses from the raw data. Later, transform
the results into the level of the scores for each course when
m = 2, 3, 4, 5, 6, 7, 8, 9. Use the Choquet integral with the
entropy method and the complexity-based method to compute
overall performance values discussed in Step 3 for each m = 2, 3,
4, 5, 6, 7, 8, 9. Finally, transform the results into the level of the
scores for each m = 2, 3, 4, 5, 6, 7, 8, 9.
Step 5: Calculate the accuracy for each method for each m = 2, 3,
4, 5, 6, 7, 8, 9.

4. A case study

A data set comes from a class with 45 students in a junior high
school, and each student took three courses (namely physics and
chemistry, biology, and geoscience) for natural science. The credit
hours for these three courses are 16, 4, and 4, respectively. The
maximum score for each course is 100 points. Later, all students
took a Basic Competence Test for all junior high school students.
The maximum and minimum scores of the Basic Competence Test
are 60 and 1, respectively. To simplify the notations, physics and
chemistry, biology, and geoscience are denoted by C1, C2, C3, while
the score of the Basic Competence Test is denoted by Obj. The de-
tailed information is depicted in Table 7.

The first step is to use two rules to help decide the range of the
number of level. One is Scott rule with the formula of m ¼ R�n1=3

3:49�r,
where R is full range, m is the number of the level, r is the standard
deviation of the distribution, and n is the available sample of size

Table 5
A fuzzy measure constructed by the entropy method

X1 X2 Fuzzy measure m1

0 0 0/0.9710 = 0
1 0 0.9710/0.9170 = 1
0 1 0/0.9710 = 0
1 1 0.9710/0.9710 = 1

Table 6
A fuzzy measure constructed by the complexity method

X1 X2 Fuzzy measure C1

0 0 0/1 = 0
1 0 2/2 = 1
0 1 1/2 = 0.5
1 1 2/2 = 1
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(Scott, 1979). In practice, r is replaced by the estimated standard
deviation, s. In our study, the sample of size n is 45. From the
raw data, R = 35, 26, 28, and 45 for each item and s = 8.4887,
6.7182, 7.6480, and 10.7691, respectively. By the above formula,
m would be 4.2021, 3.9443, 3.7313, and 4.2587, respectively. Thus,
m = 4 or 5 are possible candidates. The other one is the Sturge’s for-
mula: m = 1 + 3.3 * log10(n) (Scott, 1992). From the latter formula,

m is 6.4556. Thus, m = 6 or 7 are possible candidates. In this study,
set m = 2, 3, 4, 5, 6, 7, 8, 9 for extending m values around the pos-
sible candidates by two levels. That is, m = 2, 3, 4, 5, 6, 7, 8, 9.

The second step is to check whether there exist mutual interac-
tions at significant level of 0.01 among courses and observe the
strength of mutual interactions among courses. First, use the
results in Step 1 and ‘‘crosstab.m” program of Matlab 7.0 to com-
pute the corresponding p-values and Chi-square divergence be-
tween a pair of criteria for each m = 2, 3, 4, 5, 6, 7, 8, 9. Later,
compute Cramer’s correlation coefficient by using Chi-square
values by the following formula: G ¼

ffiffiffiffiffi
v2

n�L

q
, where n = 45 and

L = m � 1 for each m = 2, 3, 4, 5, 6, 7, 8, 9. From p-values under
m = 2, 3, 4, 5, 6, 7, 8, 9, summarized in Table 8, clearly there exist
mutual interactions at significant level of 0.01 among courses when
m = 2, 3, 4, 5, 6, 7, 8 except m = 9. From Cramer’s correlation coeffi-
cient in Table 8, we know the strength of mutual interactions
among courses is stronger. Thus, we expect the accuracy of the
Choquet integral method is better than those of weighted arithme-
tic mean and regression methods when m = 2, 3, 4, 5, 6, 7, 8.

The third step is to calculate the importance for each course by
weighted arithmetic mean and regression methods, and the results
are summarized in Table 9. From Table 9, C1 (physics and chemis-
try) has the highest importance than C2 (biology) and C3 (geosci-
ence) by the weighted arithmetic mean method, i.e., C1 > C2 = C3.
In contrast to the weighted arithmetic mean method, the regres-
sion method shows different importance as follows: C1 > C3 > C2.
That is, it suggests that the class needs to put more efforts on geo-
science to improve the score on the Basic Competence Test. For the
evaluation of the Choquet integral with the entropy-based and the
complexity-based methods, calculate the importance for each sub-
set generated by all courses for m = 2, 3, 4, 5, 6, 7, 8, 9. The numer-
ical figures of fuzzy measures for each subset are computed by
Matlab and provided in Table 10. From Table 10, the importance
of complexity-based method is larger than that of entropy-based
method for each subset of all criteria. This means that the impor-
tance of entropy-based method is underestimated. The reasons
may come from the error of estimating a population probability
by a small sample of size 45.

The fourth step is to compute the overall performance of stu-
dents by the four methods. For each student, the overall perfor-
mance and the score of the Basic Competence Test are
transformed into the level of the scores for each item, as shown
in Table 11, where M1, M2, M3, and M4 represent the weighted
arithmetic mean method, the regression method, the Choquet inte-
gral with the entropy-based method, and the Choquet integral with
the complexity-based method, respectively. The different numeri-
cal figures in the Choquet integral column depicted in Table 11
have different meanings. The higher the value of Choquet integral
is, the better it is. Finally, the fifth step is to compare the predic-
tions of different methods under different m, depicted in Table 12,
where higher value means better accuracy. Obviously, the Choquet
integral with the complexity-based method has the best accuracy
among the four methods. The reasons may be that to estimate a
population by the sample probability is worsen when m is greater
than 4. It is worth to note that the regression method has better
accuracy than the weighted arithmetic mean method since the
regression method is to minimize the error without the assump-
tion of mutual interaction among courses.

Table 7
The detailed information in the case study

Student C1 C2 C3 Obj Student C1 C2 C3 Obj

1 70 81 75 41 26 78 80 76 37
2 70 85 86 42 27 88 84 80 35
3 65 85 84 33 28 55 65 60 5
4 75 91 85 25 29 78 85 75 27
5 75 80 82 27 30 72 84 78 47
6 68 75 76 33 31 64 76 70 27
7 70 77 72 35 32 60 70 65 20
8 80 78 70 31 33 69 80 70 35
9 83 81 85 50 34 66 78 66 17

10 75 79 83 31 35 62 70 66 13
11 62 74 68 35 36 61 72 65 28
12 68 74 80 30 37 68 74 71 11
13 77 85 81 37 38 53 65 59 9
14 66 76 74 29 39 67 70 64 36
15 78 88 83 31 40 59 65 68 16
16 57 67 62 15 41 74 82 75 49
17 56 70 63 12 42 58 66 62 15
18 68 80 74 31 43 76 74 78 38
19 53 66 58 21 44 84 81 78 37
20 65 81 73 32 45 76 72 74 35
21 62 76 69 12
22 67 75 71 22
23 74 71 68 28
24 61 69 65 28
25 64 70 67 24

Table 8
The results of Cramer’s correlation coefficients

C1 C2 C3 C1 C2 C3

m = 2 m = 3
C1 1 0.5307 0.5737 1 0.5437 0.5284
C2 0.5307 1 0.7441 0.5437 1 0.6765
C3 0.5737 0.7441 1 0.5284 0.6765 1
p < 0.01 p < 0.01

m = 4 m = 5
C1 1 0.5097 0.5744 1 0.5131 0.5885
C2 0.5097 1 0.6026 0.5131 1 0.5583
C3 0.5744 0.6026 1 0.5885 0.5583 1
p < 0.01 p < 0.01

m = 6 m = 7
C1 1 0.4848 0.5537 1 0.4991 0.537
C2 0.4848 1 0.6212 0.4991 1 0.5821
C3 0.5537 0.6212 1 0.537 0.5821 1
p < 0.01 p < 0.01

m = 8 m = 9
C1 1 0.515 0.5329 1 0.5164 0.5375
C2 0.515 1 0.5336 0.5164 1 0.5049*

C3 0.5329 0.5336 1 0.5375 0.5049* 1
p < 0.01

* p > 0.01.

Table 9
Weights for each course by the weighted arithmetic mean and regression methods

Weighted arithmetic mean method Regression method

C1 C2 C3 b C1 C2 C3

16/24 4/24 4/24 45.8959 0.5062 0.1650 0.3732

Jiunn-I Shieh et al. / Expert Systems with Applications 36 (2009) 5100–5106 5103



Table 10
Entropy-based and complexity-based fuzzy measures with m = 2, 3, 4, 5, 6, 7, 8, 9

Entropy-based Complexity-based

C1 C2 C3 Fuzzy measure C1 C2 C3 Fuzzy measure

m = 2
0 0 0 0 0 0 0 0
1 0 0 0.1667 1 0 0 0.2857
0 1 0 0.1667 0 1 0 0.2857
1 1 0 0.5 1 1 0 0.5714
0 0 1 0.1667 0 0 1 0.2857
1 0 1 0.5 1 0 1 0.5714
0 1 1 0.5 0 1 1 0.5714
1 1 1 1 1 1 1 1

m = 3
0 0 0 0 0 0 0 0
1 0 0 0.1667 1 0 0 0.2308
0 1 0 0.1667 0 1 0 0.2308
1 1 0 0.5 1 1 0 0.5385
0 0 1 0.1667 0 0 1 0.2308
1 0 1 0.5 1 0 1 0.5385
0 1 1 0.5 0 1 1 0.5385
1 1 1 1 1 1 1 1

m = 4
0 0 0 0 0 0 0 0
1 0 0 0.1579 1 0 0 0.2
0 1 0 0.1579 0 1 0 0.2
1 1 0 0.579 1 1 0 0.6
0 0 1 0.1579 0 0 1 0.2
1 0 1 0.579 1 0 1 0.6
0 1 1 0.5263 0 1 1 0.55
1 1 1 1 1 1 1 1

m = 5
0 0 0 0 0 0 0 0
1 0 0 0.1667 1 0 0 0.2
0 1 0 0.1667 0 1 0 0.2
1 1 0 0.5 1 1 0 0.52
0 0 1 0.1667 0 0 1 0.2
1 0 1 0.5417 1 0 1 0.56
0 1 1 0.5 0 1 1 0.52
1 1 1 1 1 1 1 1

m = 6
0 0 0 0 0 0 0 0
1 0 0 0.1786 1 0 0 0.2069
0 1 0 0.1786 0 1 0 0.2069
1 1 0 0.6786 1 1 0 0.6897
0 0 1 0.1786 0 0 1 0.2069
1 0 1 0.6429 1 0 1 0.6552
0 1 1 0.6072 0 1 1 0.6207
1 1 1 1 1 1 1 1

m = 7
0 0 0 0 0 0 0 0
1 0 0 0.1936 1 0 0 0.2188
0 1 0 0.1936 0 1 0 0.2188
1 1 0 0.7097 1 1 0 0.7188
0 0 1 0.1936 0 0 1 0.2188
1 0 1 0.7097 1 0 1 0.7188
0 1 1 0.6774 0 1 1 0.6875
1 1 1 1 1 1 1 1

m = 8
0 0 0 0 0 0 0 0
1 0 0 0.1945 1 0 0 0.2162
0 1 0 0.1945 0 1 0 0.2162
1 1 0 0.6667 1 1 0 0.6757
0 0 1 0.1945 0 0 1 0.2162
1 0 1 0.6667 1 0 1 0.6757
0 1 1 0.7222 0 1 1 0.7297
1 1 1 1 1 1 1 1

m = 9
0 0 0 0 0 0 0 0
1 0 0 0.2286 1 0 0 0.25
0 1 0 0.2286 0 1 0 0.25
1 1 0 0.7143 1 1 0 0.7222
0 0 1 0.2286 0 0 1 0.25
1 0 1 0.8286 1 0 1 0.8333

Table 11
The results of overall performance evaluated by four methods and the scores of the
Basic Competence Test are transformed into the level of the scores with m = 2, 3, 4, 5,
6, 7, 8, 9

Student M1 M2 M3 M4 Obj Student M1 M2 M3 M4 Obj

m = 2
1 2 2 2 2 2 26 2 2 2 2 2
2 2 2 2 2 2 27 2 2 2 2 2
3 2 2 2 2 2 28 1 1 1 1 1
4 1 2 2 2 1 29 1 2 2 2 1
5 1 2 2 2 1 30 2 2 2 2 2
6 2 2 2 2 2 31 1 1 1 1 1
7 2 2 2 2 2 32 1 1 1 1 1
8 2 2 2 2 2 33 2 2 2 2 2
9 2 2 2 2 2 34 1 1 1 1 1

10 2 2 2 2 2 35 1 1 1 1 1
11 2 1 1 1 2 36 2 1 1 1 2
12 2 2 2 2 2 37 1 1 1 1 1
13 2 2 2 2 2 38 1 1 1 1 1
14 2 1 2 2 2 39 2 1 1 1 2
15 2 2 2 2 2 40 1 1 1 1 1
16 1 1 1 1 1 41 2 2 2 2 2
17 1 1 1 1 1 42 1 1 1 1 1
18 2 2 2 2 2 43 2 2 2 2 2
19 1 1 1 1 1 44 2 2 2 2 2
20 2 1 2 2 2 45 2 2 2 2 2
21 1 1 1 1 1
22 1 1 1 1 1
23 2 2 1 1 2
24 2 1 1 1 2
25 1 1 1 1 1

m = 3
1 2 2 2 2 3 26 3 3 3 3 3
2 2 3 3 3 3 27 3 3 3 3 2
3 2 2 3 3 2 28 1 1 1 1 1
4 3 3 3 3 2 29 3 3 3 3 2
5 3 3 3 3 2 30 2 3 3 3 3
6 2 2 2 2 2 31 2 2 2 2 2
7 2 2 2 2 2 32 1 1 1 1 1
8 3 3 3 3 2 33 2 2 2 2 2
9 3 3 3 3 3 34 2 2 2 2 1

10 3 3 3 3 2 35 1 1 1 1 1
11 1 1 2 2 2 36 1 1 1 1 2
12 2 2 2 2 2 37 2 2 2 2 1
13 3 3 3 3 3 38 1 1 1 1 1
14 2 2 2 2 2 39 2 2 1 2 3
15 3 3 3 3 2 40 1 1 1 1 1
16 1 1 1 1 1 41 2 3 3 3 3
17 1 1 1 1 1 42 1 1 1 1 1
18 2 2 2 2 2 43 3 3 2 3 3
19 1 1 1 1 2 44 3 3 3 3 3
20 2 2 2 2 2 45 2 2 2 2 2
21 1 2 2 2 1
22 2 2 2 2 2
23 2 2 2 2 2
24 1 1 1 1 2
25 1 1 1 2 2

m = 4
1 3 3 3 3 4 26 3 4 3 4 3
2 3 4 4 4 4 27 4 4 4 4 3
3 3 3 4 3 3 28 1 1 1 1 1
4 4 4 4 4 2 29 4 4 4 4 2
5 3 4 4 4 2 30 3 3 4 3 4
6 2 3 3 3 3 31 2 2 2 2 2
7 3 3 3 3 3 32 1 1 1 1 2
8 3 3 3 3 3 33 3 3 3 3 3

Table 10 (continued)

Entropy-based Complexity-based

C1 C2 C3 Fuzzy measure C1 C2 C3 Fuzzy measure

0 1 1 0.8 0 1 1 0.8056
1 1 1 1 1 1 1 1
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Table 11 (continued)

Student M1 M2 M3 M4 Obj Student M1 M2 M3 M4 Obj

9 4 4 4 4 4 34 2 2 2 2 2
10 3 4 4 4 3 35 2 2 2 2 1
11 2 2 2 2 3 36 2 2 2 2 3
12 2 3 3 3 3 37 2 2 2 2 1
13 4 4 4 4 3 38 1 1 1 1 1
14 2 2 3 3 3 39 2 2 2 2 3
15 4 4 4 4 3 40 1 1 1 1 1
16 1 1 1 1 1 41 3 3 3 3 4
17 1 1 1 1 1 42 1 1 1 1 1
18 2 3 3 3 3 43 3 3 3 3 3
19 1 1 1 1 2 44 4 4 4 4 3
20 2 2 3 3 3 45 3 3 3 3 3
21 2 2 2 2 1
22 2 2 2 2 2
23 3 3 2 3 3
24 1 1 1 2 3
25 2 2 2 2 2

m = 5
1 4 4 4 4 4 26 4 4 4 4 4
2 5 4 5 5 5 27 4 5 5 5 4
3 4 4 4 4 4 28 1 1 1 1 1
4 3 5 5 5 3 29 3 4 5 5 3
5 3 4 4 5 3 30 5 4 4 4 5
6 4 3 3 3 4 31 3 3 3 3 3
7 4 3 3 3 4 32 2 2 2 2 2
8 3 4 4 4 3 33 4 3 3 3 4
9 5 5 5 5 5 34 2 2 3 3 2

10 3 4 4 5 3 35 1 2 2 2 1
11 4 2 2 2 4 36 3 2 2 2 3
12 3 3 4 3 3 37 1 3 3 3 1
13 4 5 5 5 4 38 1 1 1 1 1
14 3 3 3 3 3 39 4 2 2 2 4
15 3 5 5 5 3 40 2 2 1 2 2
16 2 1 1 1 2 41 5 4 4 4 5
17 1 1 1 1 1 42 2 1 1 1 2
18 3 3 3 3 3 43 4 4 4 4 4
19 2 1 1 1 2 44 4 5 5 5 4
20 3 3 3 3 3 45 4 4 3 4 4
21 1 2 3 2 1
22 2 3 3 3 2
23 3 3 3 3 3
24 3 2 2 2 3
25 3 2 2 2 3

m = 6
1 5 4 4 4 5 26 5 5 5 5 5
2 5 5 6 6 5 27 4 6 6 6 4
3 4 4 5 5 4 28 1 1 1 1 1
4 3 6 6 6 3 29 3 5 5 5 3
5 3 5 5 5 3 30 6 5 5 5 6
6 4 4 4 4 4 31 3 3 3 3 3
7 4 4 4 4 4 32 2 2 2 2 2
8 4 5 5 5 4 33 4 4 4 4 4
9 6 6 6 6 6 34 2 3 3 3 2

10 4 5 5 5 4 35 2 2 2 2 2
11 4 2 3 3 4 36 4 2 2 2 4
12 4 4 4 4 4 37 1 3 3 3 1
13 5 5 6 6 5 38 1 1 1 1 1
14 4 3 3 4 4 39 5 3 2 3 5
15 4 6 6 6 4 40 2 2 2 2 2
16 2 1 1 1 2 41 6 5 5 5 6
17 1 1 2 1 1 42 2 1 1 1 2
18 4 4 4 4 4 43 5 5 4 5 5
19 3 1 1 1 3 44 5 6 5 6 5
20 4 3 4 4 4 45 4 4 4 4 4
21 1 3 3 3 1
22 3 3 3 3 3
23 4 4 3 4 4
24 4 2 2 2 4
25 3 2 2 3 3

m = 7
1 4 5 5 5 6 26 6 6 5 6 5
2 5 6 7 7 6 27 7 7 7 7 5
3 4 5 6 6 5 28 1 1 1 1 1

Table 11 (continued)

Student M1 M2 M3 M4 Obj Student M1 M2 M3 M4 Obj

4 6 7 7 7 4 29 6 6 6 6 4
5 5 6 6 6 4 30 5 5 6 6 7
6 4 4 4 5 5 31 3 3 4 4 4
7 4 4 4 4 5 32 2 2 2 2 3
8 6 5 5 5 5 33 4 4 4 4 5
9 7 7 7 7 7 34 3 3 4 3 2

10 5 6 6 6 5 35 2 2 2 3 2
11 3 3 3 3 5 36 2 2 2 2 4
12 4 5 5 5 4 37 4 4 3 4 1
13 6 6 6 7 5 38 1 1 1 1 1
14 4 4 4 4 4 39 3 3 2 3 5
15 6 7 7 7 5 40 2 2 2 2 2
16 1 1 1 1 2 41 5 5 5 5 7
17 1 1 2 2 2 42 1 1 1 1 2
18 4 4 5 5 5 43 5 5 5 5 6
19 1 1 1 1 3 44 7 7 6 7 5
20 4 4 5 4 5 45 5 5 4 5 5
21 3 3 3 3 2
22 4 4 4 4 3
23 4 4 3 4 4
24 2 2 2 2 4
25 3 3 2 3 3

m = 8
1 5 5 6 6 7 26 6 7 6 7 6
2 6 7 7 8 7 27 8 8 8 8 6
3 5 6 7 7 5 28 1 1 1 1 1
4 7 8 8 8 4 29 7 7 7 7 4
5 6 7 6 7 4 30 6 6 6 7 8
6 4 5 5 5 5 31 3 4 4 4 4
7 5 5 5 5 6 32 2 2 2 3 3
8 6 6 6 6 5 33 5 5 5 5 6
9 8 8 7 8 8 34 4 4 4 4 3

10 6 7 7 7 5 35 3 3 2 3 2
11 3 3 3 3 6 36 3 3 3 3 5
12 4 5 5 5 5 37 4 4 4 4 2
13 7 7 7 8 6 38 1 1 1 1 1
14 4 4 4 5 5 39 3 3 3 3 6
15 7 8 8 8 5 40 2 2 2 2 2
16 1 2 1 2 2 41 6 6 6 6 8
17 1 2 2 2 2 42 2 2 1 2 2
18 4 5 5 5 5 43 6 6 5 6 6
19 1 1 1 1 3 44 8 8 7 8 6
20 4 4 5 5 5 45 6 6 5 5 6
21 3 3 4 4 2
22 4 4 4 4 4
23 5 5 4 4 5
24 2 2 2 3 5
25 3 3 3 3 4

m = 9
1 5 6 6 6 8 26 7 7 6 7 7
2 6 7 8 9 8 27 9 9 9 9 6
3 5 6 8 8 6 28 1 1 1 1 1
4 8 8 9 9 4 29 7 7 7 8 5
5 7 7 7 8 5 30 6 7 7 7 9
6 5 5 5 6 6 31 4 4 4 4 5
7 5 5 5 5 6 32 2 3 2 3 3
8 7 7 6 7 6 33 5 5 5 5 6
9 9 9 8 9 9 34 4 4 4 4 3

10 7 8 7 8 6 35 3 3 3 3 2
11 3 3 4 4 6 36 3 3 3 3 5
12 5 6 6 6 5 37 5 5 4 5 2
13 7 8 8 8 7 38 1 1 1 1 1
14 4 5 5 5 5 39 4 4 3 3 7
15 8 8 9 9 6 40 2 3 2 2 3
16 2 2 1 2 2 41 6 7 6 7 9
17 2 2 2 2 2 42 2 2 1 2 2
18 5 5 6 6 6 43 7 7 6 7 7
19 1 1 1 1 4 44 8 8 8 8 7
20 4 5 6 6 6 45 6 6 5 6 6
21 3 4 4 4 2
22 4 5 4 5 4
23 5 5 4 5 5
24 3 3 2 3 5
25 3 3 3 3 4
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5. Conclusions

A case study of applying weighted arithmetic mean method,
regression method, the Choquet integral with the entropy-based
method, and the proposed Choquet integral with the complexity-
based method is presented in this study to evaluate the overall
performance of students in a junior high school based on a Basic
Competence Test. The weighted arithmetic mean and regression
methods assume there is no any interaction between courses,
whereas the Choquet integral methods can be used to deal with
interactions among courses. The advantage of the proposed Cho-
quet integral with the complexity-based method is that no popula-
tion probability is to be estimated such that the error of estimating
the population probability is reduced. Typically, in order to accu-
rately estimate the population probabilities, the sample of size
should be large enough.

In our study, the statistical tests show that there exists interac-
tion between any two courses which result in the best perfor-
mance of our proposed method consistently for different m
values. The poor performance of the Choquet integral with the

entropy-based method might result from the smaller sample of
size. Note that our sample of size is 45. Thus, the error of estimat-
ing a population probability based on a small sample of size might
be larger. Finally, the proposed Choquet integral with the complex-
ity-based method is suitable to deal with particularly small sample
of sizes.
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The accuracy for each method with m = 2, 3, 4, 5, 6, 7, 8, 9

m Weighted
arithmetic
mean

Regression Choquet integral
based on entropy

Choquet integral
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2 0.7333 0.8 0.8222 0.8222
3 0.5778 0.6222 0.6 0.6444
4 0.4444 0.4889 0.5333 0.5333
5 0.3111 0.4 0.3333 0.4
6 0.3778 0.4667 0.3778 0.4667
7 0.2444 0.2667 0.2667 0.2889
8 0.2444 0.3556 0.2889 0.3556
9 0.2889 0.3111 0.2 0.3333
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Abstract—The well known fuzzy measures, Lambda-measure and 

P-measure, have only one formulaic solution, the former is not a 
closed form, and the latter is not sensitive enough.  In this paper, a 
novel fuzzy measure, called Delta-measure, is proposed. This new 
measure proves to be a multivalent fuzzy measure which provides 
infinitely many solutions to closed form, and it can be considered as an 
extension of the above two measures. In other words, the above two 
fuzzy measures can be treated as the special cases of Delta-measure. 
For evaluating the Choquet integral regression models with our 
proposed fuzzy measure and other different ones, a real data 
experiment by using a 5-fold cross-validation  mean square error 
(MSE) is conducted. The performances of Choquet integral regression 
models with fuzzy measure based on Delta-measure, Lambda-measure 
and P-measure, respectively, a ridge regression model and a multiple 
linear regression model are compared. Experimental result shows that 
the Choquet integral regression models with respect to Delta-measure 
based on Gamma-support outperforms other forecasting models. 
 

Keywords—Lambda-measure, P-measure, Delta-measure, 
Gamma-support, Choquet integral regression model.  
 
 

I. INTRODUCTION 
HEN there are interactions among independent 

variables, traditional multiple linear regression models 
do not perform well enough. The traditional improved methods 
exploited ridge regression models [1]. In this paper, we suggest 
using the Choquet integral regression models [5,6,7,8,9,10] 
based on some single or compounded fuzzy measures [2,3,4, 
12,13] to improve this situation. The well-known fuzzy 
measures, λ-measure [2,3] and P-measure [4], have only one 
formulaic solution of fuzzy measure, the former is not a closed 
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form, and the latter is not sensitive enough. In this paper, we 
proposed a new fuzzy measure, δ-measure, which offers 
infinitely many solutions to a fuzzy measure with closed form 
and without changing the given singleton measure, and thereby, 
we can obtain an improved Choquet integral regression model 
with respect to this new fuzzy measure. 

This paper is organized as follows: The multiple linear 
regression and ridge regression [1] are introduced in section II; 
two well known fuzzy measure, λ-measure [2] and P-measure 
[4],  are introduced in section III; our new measure, δ-measure, 
is introduced in section IV; the fuzzy support, γ-support [7] is 
described in section V; the Choquet integral regression model 
[6],[7],[8] based on fuzzy measures are described in section VI; 
experiment and result are described in section VII; and final 
section is for conclusions and future works. 

 
 

II. THE MULTIPLE LINEAR REGRESSION, RIDGE REGRESSION  

Let ( )2,  ~ N 0, nY X I= +β ε ε σ  be a multiple linear 

model, ( ) 1ˆ X X X Y−′ ′=β  be the estimated regression 

coefficient vector, and ( ) 1ˆ
k nX X kI X Y−′ ′= +β  be the 

estimated ridge regression coefficient vector, Kenard and 
Baldwin [1] suggested 
 

                            
2ˆˆ

ˆ ˆ
nk =

′
σ

β β
                       (1) 

 
 

III. FUZZY MEASURES 
The two well known fuzzy measures, the λ-measure 

proposed by Sugeno in 1974, and P-measure proposed by 
Zadah in 1978, are concise introduced as follows.   

 

A. Axioms of Fuzzy Measures [2, 3, 4] 
A fuzzy measure μ  on a finite set X is a set function 

[ ]: 2 0,1Xμ →  satisfying the following axioms:  
 

1) ( ) ( )0 , 1Xμ φ μ= =  (boundary conditions)     (2) 

2) ( ) ( )A B A Bμ μ⊆ ⇒ ≤  (monotonicity)          (3) 
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B. Singleton Measures [2, 6, 7] 
A singleton measure of a fuzzy measure μ  on a finite set X is 

a function [ ]: 0,1s X →  satisfying:  

( ) { }( ) ,s x x x Xμ= ∈                          (4) 

( )s x  is called the fuzzy density of singleton x . 
 
For given singleton measures s, a λ-measure, gλ , is a fuzzy 

measure on a finite set X, satisfying: 

, 2 , ,XA B A B A B Xφ∈ = ≠∩ ∪  

 
( )

( ) ( ) ( ) ( )
g A B

g A g B g A g B
λ

λ λ λ λλ

⇒

= + +

∪
   (5) 

( ) ( ) { }( )
1

1 1 0,
n

i i i
i

s x s x g xλλ λ
=

⎡ + ⎤ = + > =⎣ ⎦∏   (6) 

Note that once the singleton measure is known, we can 
obtain the values of λ uniquely by using the previous 
polynomial equation. In other words, λ-measure has a unique 
solution without closed form. Moreover, for given singleton 
measures s, ( )( ) 1 ( )

x X x A

If s x then g A s xλ
∈ ∈

= =∑ ∑ , in other 

word, if ( ) 1
x X

s x
∈

=∑ then λ-measure is just the additive 

measure 
 

 

C. P-measure [4] 
For given singleton measures s, a P-measure, Pg , is a fuzzy 

measure on a finite set X, satisfying:  

( ) ( ){ } { }( ){ }
2

max max

X

P Px A x A

A

g A s x g x

∀

∈ ∈

∈

⇒ = =
        (7) 

Note that for any subset of X, A, P-measure considers only 
the maximum value and will lead to insensitivity. 
 

 

IV. A NEW METHOD - DELTA-MEASURES 
 

A. Definition of δ-measure 
For given singleton measure s, a δ-measure, gδ , is a fuzzy 

measure on a finite set X, X n= , satisfying: 
 
1) [ ]1,1 , ( ) 1

x X

s xδ
∈

∈ − =∑                                                                           

2) ( ) ( )0, 1g g Xδ δφ = =  
3) ,A X A X∀ ⊂ ≠ ⇒  

( ) ( )
( )

( )
1 ( )

1 max max
1 ( )

x A

x A x A

x A

s x
g A s x s x

s xδ

δ
δ δ

δ
∈

∈ ∈

∈

+
⎡ ⎤= + −⎢ ⎥⎣ ⎦ +

∑
∑

  

 (8) 
 
 

B. Important Properties of δ-measure 
 

To prove that δ-measure is a fuzzy measure, we need to 
prove the following theorem 1 firstly. 

 
Theorem 1 
For given singleton measure s,  
 

If A B X⊆ ⊆  then  

( ) ( ) ( ){ } ( ){ }max max 0
x B x Ax B x A

s x s x s x s x
∈ ∈

∈ ∈

− ≥ − ≥∑ ∑  

  (9) 

[Proof] 
Let { } { }1 2 1 2, ,..., , , ,...,n nB A C A x x x C x x x= = =∪ ∪  

If ( ){ } ( ){ }max max
x B x A

s x s x
∈ ∈

= , then 

( ) ( ) ( ){ } ( ){ }0 max max
x B x Ax B x A

s x s x s x s x
∈ ∈

∈ ∈

− ≥ = −∑ ∑ ,  

its true, 

 now suppose that ( ){ } ( ){ }max max
x B x A

s x s x
∈ ∈

>  

(I) If n=1, let { }1B A C A x= =∪ ∪ , then 

(i)  

( ) ( ) ( ) ( ) ( )1
x B x A x C x A

s x s x s x s x s x
∈ ∈ ∈ ∈

= + = +∑ ∑ ∑ ∑  

( ) ( ) ( )1 0
x B x A

s x s x s x
∈ ∈

⇒ = − ≥∑ ∑  

(ii) Since 

( ){ } ( ){ } ( ){ } ( ){ }1max max max , max
x B x A x A

s x s x s x s x
∈ ∈ ∈

= >  

 

( ) ( ){ } ( ){ } ( ){ }1 max max max
x B x B x A

s x s x s x s x
∈ ∈ ∈

⇒ = ≥ −  

(iii) from (i) and (ii), we can obtain 

( ) ( ) ( ){ } ( ){ }max max
x B x Ax B x A

s x s x s x s x
∈ ∈

∈ ∈

− ≥ −∑ ∑   
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(II) If n=k , let { }1 2, ,..., kB A C A x x x= =∪ ∪  

satisfying 
( ) ( ) ( ){ } ( ){ }max max

x B x Ax B x A

s x s x s x s x
∈ ∈

∈ ∈

− ≥ −∑ ∑   (10) 

To prove that if n=k+1 , 
{ } { }1 2 1 1, ,..., ,k k kB A C A x x x x B x+ +′ = = =∪ ∪ ∪  

Satisfying 
( ) ( ) ( ){ } ( ){ }max max

x B x Ax B x A

s x s x s x s x
′∈ ∈′∈ ∈

− ≥ −∑ ∑  (11) 

Since { }1kB B x +′ = ∪ , and ( ) ( ){ }1 maxk x B
s x s x+ ′∈

≤  

(i) if ( ){ } ( ){ }max max
x B x B

s x s x
′∈ ∈

= , then 

( ) ( ) ( ) ( ) ( )1k
x B x A x B x A

s x s x s x s x s x+
′∈ ∈ ∈ ∈

− = + −∑ ∑ ∑ ∑
( ) ( ){ } ( ){ }1 max maxk x B x A

s x s x s x+ ∈ ∈
≥ + −

( ) ( ){ } ( ){ }1 max maxk x B x A
s x s x s x+ ′∈ ∈

= + −

( ){ } ( ){ }
( ) ( )

( ){ } ( ){ }

max max

max max

x B x A

x B x A

x B x A

s x s x

s x s x

s x s x

′∈ ∈

′∈ ∈

′∈ ∈

≥ −

⇒ −

≥ −

∑ ∑  

(ii) Now suppose that ( ){ } ( ){ }max max
x B x B

s x s x
′∈ ∈

< , 

            then ( ) ( ){ }1 maxk x B
s x s x+ ′∈

= , and 

( ) ( )

( ) ( ) ( )1

x B x A

k
x B x A

s x s x

s x s x s x
′∈ ∈

+
∈ ∈

−

= + −

∑ ∑
∑ ∑

 

( ) ( ){ }
( ){ } ( ){ }

( ) ( )

( ){ } ( ){ }

1 max  

max max

max max

k x B

x B x A

x B x A

x B x A

s x s x

s x s x

s x s x

s x s x

+ ′∈

′∈ ∈

′∈ ∈

′∈ ∈

≥ =

≥ −

⇒ −

≥ −

∑ ∑
 

(III) By mathematical induction, from (I) and (II), the proof is 
completed. 

 
 

Theorem 2  

For given singleton measure s, [ ]1,1δ∀ ∈ − , δ-measure is a 
fuzzy measure. 

[Proof]; 

(I) To prove the boundary conditions; ( )0 1g Aδ≤ ≤  

(i)  if 1δ = −  it is trivial 
(ii)  if 1δ > −   

( ) ( )0 1 1 0
x A x A

s x s xδ
∈ ∈

≤ ≤ ⇒ + >∑ ∑     

Since 

( ) ( )

( ){ } ( ) ( )

( ){ } ( )

1

1 m a x 1

m a x 1

x A

x A
x A

x A
x A

g A s x

s x s x

s x s x

δ δ

δ δ

δ δ

∈

∈
∈

∈
∈

⎡ ⎤
+ =⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤+ +⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤− +⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

∑

∑

∑

 

and 
 

( ) ( ){ }

( ){ } ( )

1,

1 1 max 0,

0 max 1

x Ax A

x A x A

s x s x

s x s x

δ

δ δ
∈

∈

∈
∈

> −

⎡ ⎤ ⎡ ⎤+ ≥ + >⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
< ≤ ≤

∑

∑

 

Hence 

( ) ( )

( ) ( ) ( ){ } ( )

( ){ }

1

1 max

max

x A

x Ax A x A

x A

g A s x

s x s x s x

s x

δ δ

δ δ

δ

∈

∈
∈ ∈

∈

⎡ ⎤
+⎢ ⎥

⎣ ⎦
= + +

−

∑

∑ ∑   

( ) ( ) ( ) ( )

( ) ( ){ } ( )

1 0,

1 1

max 1 0

x A x A

x A x A

if then

g A s x s x

s x s x

δ

δ

δ δ

δ

∈ ∈

∈
∈

− ≤ ≤

⎡ ⎤
+ = +⎢ ⎥

⎣ ⎦
⎡ ⎤

+ − − ≥⎢ ⎥
⎣ ⎦

∑ ∑

∑

 (12) 

( ) ( )

( ){ }( ) ( )

( ) ( ){ }

0 ,

1

1 m a x

m a x 0

x A

x A x A

x Ax A

i f t h e n

g A s x

s x s x

s x s x

δ

δ

δ

δ

δ

∈

∈
∈

∈
∈

>

⎡ ⎤
+⎢ ⎥

⎣ ⎦

= + +

⎡ ⎤
− ≥⎢ ⎥

⎣ ⎦

∑

∑

∑

 

Therefore 

( ) ( )1 0
x A

g A s xδ δ
∈

⎡ ⎤
+ ≥⎢ ⎥

⎣ ⎦
∑  , and   ( ) 0g Aδ ≥  

  (13) 
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(iii)  
( ){ } ( ) ( )1 max 1

x A x A

s x s xδ δ
∈

∈

⎡ ⎤+ + −⎢ ⎥⎣ ⎦ ∑

( ){ } ( ) ( )

( ){ } ( )

max 1 1

1 max 1 0

x A x A x A

x A x A

s x s x s x

s x s x

δ δ δ

δ

∈
∈ ∈

∈
∈

⎡ ⎤ ⎡ ⎤
+ − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤= + − ≤⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑

∑

 

( ){ } ( ) ( )

( ){ } ( )

1 max 1

max 1

x A x A

x A x A

s x s x

s x s x

δ δ

δ δ

∈
∈

∈
∈

⎡ ⎤⇒ + + −⎢ ⎥⎣ ⎦

⎡ ⎤
+⎢ ⎥

⎣ ⎦

∑

∑

( )

( ){ }
( ) ( )

( )
( ){ }

1

1
1 max max 1

1

x A

x A

x A x A

x A

s x

s x
s x s x

s x

δ

δ
δ δ

∈

∈

∈ ∈

∈

⎡ ⎤
≤ +⎢ ⎥

⎣ ⎦
+

⎡ ⎤⇒ + − ≤⎢ ⎥⎣ ⎦ ⎡ ⎤
+⎢ ⎥

⎣ ⎦

∑

∑

∑

 

Therefore  ( )0 1,g A A Xδ≤ ≤ ∀ ⊂  
 
 
(II) To prove the monotonicity; 

( ) ( )A B X g A g Bδ δ⊂ ⊂ ⇒ ≤  

(i) Let ( ) ( ){ } ( ) ( )Pg max ,g
x A x A

A s x A s xσ
∈

∈

= = ∑  

( ) ( ) ( ) ( )P P g g , g g
A B X

A B A Bσ σ

⊂ ⊂

⇒ ≤ ≤
Let 

( ) ( ) ( ) ( )P Pg g g gB A c B A dσ σ= + ≤ = +  

From theorem 1 we know that 0 1c d≤ ≤ ≤ , then 

( ) ( ) ( )
( )

( )1
1

1P P
g A

g A g A
g A

σ

σ

δ
δ δ

δ

⎡ ⎤+
⎡ ⎤− + −⎢ ⎥⎣ ⎦ ⎡ ⎤+⎢ ⎥⎣ ⎦⎣ ⎦

     

( ) ( ) ( )
( )

( ) ( )
( )

1
1 g

1

1
1

P
g B

A
g B

g B
c c

g B

σ

σ

σ

σ

δ
δ

δ

δ
δ δ

δ

+
⎡ ⎤= +⎣ ⎦ +

+
+ −

⎡ ⎤+⎣ ⎦

( )( ) ( ) ( )
( )

1 g
1 g

1 gP
A

A
A

σ

σ

δ
δ

δ
⎡ ⎤+

− +⎢ ⎥
+⎢ ⎥⎣ ⎦

                (14) 

 

( )
( ) ( ) ( ) ( ) ( )

( )

( ) ( )( ) ( ) ( )
( )

1

1 g 1 1

1

1 g
1 1 g

1 g

P

P

D g B D

A g B c g B

c g B

A
g B A

A

σ

σ σ

σ

σ
σ

σ

δ

δ δ δ δ

δ δ

δ
δ δ

δ

′ ⎡ ⎤⇒ = +⎣ ⎦
⎡ ⎤= + + + +⎣ ⎦

⎡ ⎤− +⎣ ⎦
⎡ ⎤+

⎡ ⎤− + +⎢ ⎥⎣ ⎦ +⎢ ⎥⎣ ⎦

 

( ) ( )[ ]
( ) ( )

1 g 1

1 g g 1

P A d

A c Bσ σ

δ δ

δ δ

⎡ ⎤⎡ ⎤= + +⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ + −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

     

 (15) 

[ ] ( )
( )

( )

( )
( ) [ ]

( ) ( )

( ) ( )[ ]
( ) ( )

( ) ( )[ ]

1, 0 1 g 0,

1 0,

1 g 0,

g 1 0,

g 0,1 ,

0 0,

0 1, 0

1 g 1

1 g g 1

1 g 1

1 g

P

P

P

if then A

A

c B

where B

d then D
and g A g B

if since d c

A d

A c B

A c

σ

σ

σ

δ δ

σ σ

δ δ

δ

δ

δ

δ

δ δ

δ δ

δ δ

δ

⎡ ⎤⎡ ⎤∈ − + ≥⎣ ⎦⎣ ⎦
+ ≥

⎡ ⎤⎡ ⎤+ ≥⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤− ≥⎣ ⎦⎣ ⎦

⎡ ⎤ ∈⎣ ⎦
′> ≥

≤

≤ ≤ ≥ ≥

⎡ ⎤⎡ ⎤⇒ + +⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ + −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤≥ + +⎣ ⎦⎣ ⎦

+ + ( ) ( )g 1 0A c Bσ σδ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤− ≥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

( ) ( )

( ) ( )
( ) ( )

where 1 1 g 0,

          1 g 1-g 0

g g
P

A and

A B

then A B A B

σ

σ

δ δ

δ δ

δ δ

⎡ ⎤⎡ ⎤+ ≥ + ≥⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ ≥ ≥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⊂ ⇒ ≤

 

Theorem 3  
(i) δ-measure is increasing function on δ 
(ii) if 1δ = −  then δ-measure is just the P-measure 
(iii) if 0δ =  then δ-measure is just the additive measure 
(iv) if 1 0δ− < <  then δ-measure is a sub-additive 

measure 
(v) if 0 1δ< <  then δ-measure is a supper-additive 

measure 
[Proof];  

(i) δ-measure is increasing function onδ 
   Let 1 21 1δ δ− ≤ < ≤  to prove that for each  

( ) ( )
1 2

A X g A g Aδ δ⊂ ⇒ ≤  

Let  ( ) ( )f g Aδδ =      

( ) ( ) ( )
( ) ( )1

1
1P P

g A
g A g A

g A
σ

σ

δ
δ δ

δ
+

⎡ ⎤= + −⎣ ⎦ +
 (16) 
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Since ( ) ( ) ( )1 0, Pg A g A g Aσ σ− ≥ ≥   

Then 

=  ( )
( ) ( ) ( )

( ) 2

1
0

1
Pg A g A g A

f
g A

σ σ

σ

δ
δ

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦′ = ≥
⎡ ⎤+⎣ ⎦

    (17) 

( )
( ) ( ) ( ) ( )

( ) 3

2 1
0

1
Pg A g A g A g A

f
g A

σ σ σ

σ

δ
δ

⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦′′ = <
⎡ ⎤+⎣ ⎦

 

(18) 

Therefore δ -measure is a concaved downward and increasing 
function onδ . 

(ii) and (iii) are trivial 
(iv) If 1 0δ− < < , since δ -measure is increasing function 

on δ  
then ( ) ( ) ( )0

x A

A X g A g A s xδ
∈

∀ ⊂ ⇒ ≤ = ∑ ,in 

other word , δ -measure is sub-additive 
(v) If 0 1δ< < , since δ -measure is increasing function on 

δ  
then ( ) ( ) ( )0

x A

A X g A g A s xδ
∈

∀ ⊂ ⇒ ≥ = ∑ ,in 

other word , δ -measure is supper-additive. 

 
Theorem 4  

If ( ) 1
x X

s x
∈

=∑ and 0δ =  then δ -measure is just the 

λ -measure 
 
Theorem 5 

P -measure, additive measure and λ -measure are the special 
cases of  δ -measure 
 

V. Γ- SUPPORT [7] 

For given singleton measure s of a fuzzy measure μ on a finite 
set X, if ( ) 1

x X

s x
∈

=∑ , then s is called a fuzzy support measure 

of μ, or a fuzzy support of μ, or a support of μ. Two kinds of 
fuzzy supports are introduced as below. 
Let μ be a fuzzy measure on a finite set { }1 2, ,..., nX x x x= , 

iy  be global response of subject i  and ( )i jf x  be the 

evaluation of subject i  for singleton jx , satisfying: 

( )0 1, 1,2,..., , 1,2,...,i jf x i N j n< < = =                   

( ) ( )( )
( )( )

1

1
, 1,2,...,

1

j
j n

k
k

r f x
x j n

r f x
γ

=

+
= =

⎡ ⎤+⎣ ⎦∑
         (19) 

where  ( )( ) , j

j

y x
j

y x

S
r f x

S S
=                                   (20)                    

2
2

1 1

1 1n N

y i i
i i

S y y
N N= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑                      (21) 

     ( ) ( )
2

2

1 1

1 1
j

n N

x i j i j
i i

S f x f x
N N= =

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ∑             (22) 

              

( ) ( ),
1 1 1

1 1 1
j

n N N

y x i i i j i j
i i i

S y y f x f x
N N N= = =

⎛ ⎞⎡ ⎤
= − −⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦
∑ ∑ ∑     (23) 

satisfying ( )0 1jxγ≤ ≤  and ( )
1

1
n

j
j

xγ
=

=∑        (24) 

then the function [ ]: 0,1Xγ →  satisfying { }( ) ( )x xμ γ= , 

x X∀ ∈  is a fuzzy support of μ, called γ-support of μ. 
 
 

VI. CHOQUET INTEGRAL REGRESSION MODELS 

A. Choquet Integral [3, 5, 9, 10]  
Let μ be a fuzzy measure on a finite set X. The Choquet 

integral of :if X R+→  with respect to μ for individual i  is 
denoted by  

( )( ) ( )( ) ( )( )1
1

, 1,2,...,
n

i
C i i ij j j

j

f d f x f x A i Nμ μ−
=

⎡ ⎤= − =⎢ ⎥⎣ ⎦∑∫  

(25) 

where ( )( )0 0if x = , ( )( )i jf x  indicates that the indices have 

been permuted so that 

  ( )( ) ( )( ) ( )( )1 20 ...i i i nf x f x f x≤ ≤ ≤ ≤               (26) 

( ) ( ) ( ) ( ){ }1, ,...,j j j nA x x x+=                          (27) 

 
 

B. Choquet Integral Regression Models [6 - 12]  
Let 1 2, ,..., Ny y y  be global evaluations of N objects and 

( ) ( ) ( )1 2, ,..., , 1,2,...,j j N jf x f x f x j n= , be their 

evaluations of jx , where : , 1,2,...,if X R i N+→ = . 

Let μ be a fuzzy measure, , Rα β ∈ , 
                 

( )2, ~ 0, , 1,2,...,i C i i iy f dg e e N i Nμα β σ= + + =∫   (28) 
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( ) ( )2

, 1

ˆˆ , arg min
N

i C i
i

y f dgμα β
α β α β

=

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ ∫    (29) 

then ˆˆˆ , 1,2,...,i iy f dg i Nμα β= + =∫  is called the 

Choquet integral regression equation of μ, where 
ˆ /yf ffS Sβ =                                             (30) 

1 1

1 1ˆˆ
N N

i i
i i

y f dg
N N μα β

= =

= −∑ ∑∫                 (31) 

                       

1 1 1

1 1

1

N N N

i i i k
i i k

yf

y y f dg f dg
N N

S
N

μ μ∗ ∗

= = =

⎡ ⎤ ⎡ ⎤
− −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦=
−

∑ ∑ ∑∫ ∫
                          

(32) 
2

1 1

1

1

N N

i k
i k

ff

f dg f dg
N

S
N

μ μ∗∗

= =

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦=
−

∑ ∑∫ ∫
            (33)  

 

VII. EXPERIMENT AND RESULT 

A. Education Data 

The total scores of 60 students from a junior high school in 
Taiwan are used for this research. The examinations of four 
courses, physics and chemistry, biology, geoscience and 
mathematics, are used as independent variables, the score of the 
Basic Competence Test of junior high school is used as a 
dependent variable.  

The data of all  variables listed in Table III is  applied to 
evaluate the performances of four Choquet integral regression 
models with P-measure, λ-measure and δ-measure based on 
γ-support respectively, a ridge regression model, and a multiple 
linear regression model by using 5-fold cross validation method 
to compute the mean square error (MSE) of the dependent 
variable. The formula of MSE is 

2

1

1 ˆ( )
N

i i
i

MSE y y
N =

= −∑                         (34) 

The singleton measures, γ-support of the P-measure, 
λ-measure and δ-measure are listed as follows which can be 
obtained by using the formula (19). 

 
{0.2488, 0.2525, 0.2439, 0.2547} 
 

For any fuzzy measure, μ-measures, once the fuzzy support 
of the μ-measure is given, all event measures of μ can be found, 
and then, the Choquet integral based on μ and the Choquet 
integral regression equation based on μ can also be found by 
using above corresponding formulae. 

The experimental results of five forecasting models are 
listed in Table I. We find that the Choquet integral regression 

model with δ-measure based on γ-support outperforms other 
forecasting regression models. 

TABLE I MSE OF REGRESSION MODELS 

Regression model 5-fold CV 
MSE 

Choquet 
Integral 

Regression 
model 

measure 
δ 48.7672 
λ 49.1832 
p 53.9582 

Ridge regression 59.1329 
Multiple linear 

regression 65.0664 

 

B. Fat Data [3, 5, 9, 10, 11] 
In this study, anthropometric dimensions were measured 

following a standard protocol [11]. High was measured to the 
nearest 0.1 cm using anthropometers. Body weight was 
measured to the nearest 0.1 kg at the same time the bioelectric 
impedance was measured using a body fat analyzer (TBF310; 
Tanita, Tokyo, Japan) to estimate the percentage of body fat 
(%fat). Skinfold thicknesses at biceps, triceps, subscapular, and 
suprailiac of the right side of body were measured with GMP 
skinfold calipers (Siber Hegener and Co. Ltd, Switzerland). 
The measurements were performed by one experienced 
operator that took two repeated measurements at the test site of 
the same subject. The mean of the two readings from each site 
was used to calculate body composition. 

A real data set with 128 samples from a elementary school 
in Taiwan including the independent variables, 4 Skinfold 
determination values, and the dependent variable, the 
measurements of the BIA of each student listed in Table IV is 
applied to evaluate the performances of three Choquet integral 
regression models with P-measure, λ-measure and L-measure 
based on γ-support respectively, a ridge regression model, and 
a multiple linear regression model by using 5-fold cross 
validation method to compute the mean square error (MSE)  of 
the dependent variable.  

The singleton measures, γ-support of the P-measure, 
λ-measure and δ-measure are listed as follows which can be 
obtained by using the formula (19). 

 
{0.2396, 0.2466, 0.254, 0.2596} 

 
The formulas of MSE is by using 5-fold cross validation 

method to compute the mean square error (MSE) of the depen 
dent variable.  

For any fuzzy measure, μ-measures, once the fuzzy 
support of the μ-measure is given, all event measures of μ can 
be found, and then, the Choquet integral based on μ and the 
Choquet integral regression equation based on μ can also be 
found. 

The singleton measures, γ-support of the P-measure, 
λ-measure and L-measure can be obtained by using the 
formulas (6). 
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The experimental results of five forecasting models are 
listed in Table II. We find that the Choquet integral regression 
model with δ-measure based on γ-support outperforms other 
forecasting regression models. 

TABLE II MSE OF REGRESSION MODELS 

Regression model 5-fold CV 
MSE 

Choquet 
Integral 

Regression 
model 

measure 
δ 14.4228 
λ 14.9218 
p 18.3846 

Ridge regression 15.7434 
Multiple linear 

regression 16.1122 

 

VIII. CONCLUSION S 
In this paper, multivalent fuzzy measure, δ-measure, is 

proposed. This new measure is proved that it is of closed form 
with infinitely many solutions, and it can be considered as an 
extension of the two well known fuzzy measures, λ-measure 
and P-measure. By using 5-fold cross-validation RMSE, an 
experiment is conducted for comparing the performances of a 
multiple linear regression model, a ridge regression model, and 
the Choquet integral regression model with respect to P-measure, 
λ-measure, and our proposed δ-measure based on γ-support 
respectively. The result shows that the Choquet integral 
regression models with respect to the proposed δ-measure based 
on γ-support outperforms other forecasting models. 

In the future, we will apply the proposed Choquet integral 
regression model with fuzzy measure based on γ-support to 
develop multiple classifier system. 
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TABLE III THE DATA SET WITH FOUR COURSES AND SCIENCE SCORES OF THE BCT 

No. C1 C2 C3 C4 BCT No. C1 C2 C3 C4 BCT 

1 72 66 78 72 19 31 66 68 75 74 25
2 86 80 82 81 35 32 68 70 74 76 40
3 56 63 69 75 21 33 57 65 75 70 24
4 78 86 86 86 33 34 74 70 80 75 35
5 66 72 80 76 23 35 49 60 69 64 13
6 68 74 77 80 28 36 51 60 63 64 18
7 74 86 87 88 44 37 58 64 68 66 32
8 54 56 62 68 7 38 73 78 84 81 39
9 71 74 80 77 26 39 56 56 65 61 6

10 68 70 80 75 33 40 61 62 70 70 25
11 53 56 70 63 22 41 57 60 68 64 23
12 67 70 80 75 35 42 57 64 67 70 26
13 70 66 70 74 13 43 50 52 68 60 7
14 60 65 75 70 23 44 84 80 76 72 49
15 68 68 78 76 35 45 62 66 76 71 22
16 58 66 76 71 37 46 70 74 78 82 32
17 61 66 72 78 33 47 69 70 80 75 26
18 68 68 80 74 26 48 63 74 74 74 42
19 56 66 76 71 21 49 66 78 80 82 39
20 59 62 70 78 29 50 67 70 80 75 31
21 62 64 76 70 36 51 56 65 75 70 23
22 71 72 78 75 26 52 50 54 66 60 18
23 74 63 69 75 12 53 71 75 85 80 41
24 59 70 80 76 37 54 74 77 80 85 26
25 75 75 85 80 39 55 71 72 76 80 31
26 73 78 84 81 24 56 60 65 75 70 21
27 62 68 72 74 29 57 59 57 70 68 17
28 77 74 80 76 42 58 50 56 65 68 13
29 63 60 68 69 17 59 72 76 80 78 38
30 56 61 75 68 22 60 81 76 78 80 33

C1 : physics and chemistry 
C2 : biology 
C3 : geoscience 
C4 : mathematics 
BCT : Basic Competence Test of nature science 
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Table IV Measurements of BIA and four skinfold determinations of percent body fat  

No BIA biceps triceps Sub- 
scapular 

Sup- 
railiac No BIA biceps triceps Sub- 

scapular 
Sup- 

railiac 
1 11.8  15.8  16.2  27.6  16.3  65 22.8 27.4  32.2  33.6  24.5  
2 17.8  20.4  12.8  35.6  23.0  66 5.4  14.4  8.0  17.2  17.5  
3 6.2  10.4  9.4  12.6  8.2  67 8.6  9.6  11.4  14.4  14.8  
4 7.0  10.2  5.6  10.6  13.6  68 7.4  9.6  8.0  10.2  13.4  
5 5.2  10.8  12.0  13.8  11.8  69 20.2 29.2  28.2  40.0  23.9  
6 20.2  24.6  39.8  40.0  34.7  70 28.4 30.6  38.6  39.8  39.5  
7 14.8  18.8  22.4  24.8  18.6  71 6.8  10.4  8.8  14.6  15.2  
8 12.4  18.2  20.2  27.6  18.4  72 11.0 12.4  10.4  14.4  11.7  
9 17.0  20.6  21.2  27.8  21.6  73 20.8 30.8  38.8  40.0  37.7  
10 16.6  22.6  18.8  32.6  16.6  74 25.0 27.6  40.0  40.0  29.6  
11 10.2  13.4  8.4  12.8  15.1  75 4.8  6.2  5.6  7.0  9.7  
12 21.0  26.7  36.2  40.0  23.9  76 8.4  7.0  8.0  11.8  15.6  
13 10.0  13.4  17.4  17.8  18.1  77 11.0 14.0  10.0  12.4  17.7  
14 9.8  13.8  11.6  19.2  15.5  78 10.6 11.6  7.0  14.4  12.9  
15 8.6  10.8  11.4  14.4  8.5  79 12.4 16.8  17.0  25.8  14.9  
16 21.8  25.6  36.6  36.8  31.7  80 11.4 14.0  20.8  26.4  25.1  
17 25.2  29.4  30.2  30.6  31.2  81 12.8 15.8  20.2  19.8  16.4  
18 10.2  11.0  10.2  14.8  12.2  82 12.0 15.6  16.0  22.8  17.3  
19 10.4  15.8  13.0  25.6  16.6  83 13.0 20.4  24.0  27.0  26.2  
20 17.6  22.6  23.2  34.6  23.2  84 14.2 15.4  22.4  22.8  18.9  
21 12.6  12.4  14.2  16.0  14.2  85 11.0 16.4  14.2  15.8  17.9  
22 9.0  11.2  9.4  11.8  9.3  86 22.4 29.8  35.0  36.2  28.5  
23 12.2  19.2  17.4  27.8  19.7  87 6.4  7.6  8.6  11.4  12.1  
24 4.6  7.0  8.8  11.2  7.2  88 6.8  10.6  9.6  14.6  12.2  
25 6.4  8.8  11.0  12.6  10.8  89 16.2 18.4  27.2  27.4  24.9  
26 23.8  29.0  37.0  35.0  30.7  90 22.4 26.8  25.4  33.4  30.4  
27 8.4  15.8  17.8  23.0  21.6  91 9.6  11.2  10.4  18.0  11.7  
28 12.2  16.6  16.4  20.6  18.7  92 10.8 17.2  24.0  24.8  21.9  
29 7.2  12.8  8.6  18.6  15.2  93 13.0 16.2  12.4  18.4  14.2  
30 21.4  31.2  31.4  39.4  28.6  94 5.6  12.4  11.4  15.6  14.5  
31 18.2  23.0  40.0  40.0  28.2  95 19.4 25.0  36.2  39.0  29.9  
32 9.2  12.6  40.0  17.8  16.0  96 14.4 22.4  29.8  35.0  24.8  
33 10.2  18.8  17.8  20.8  18.4  97 25.4 29.4  37.0  40.0  24.6  
34 19.2  24.4  35.2  35.0  34.1  98 9.4  11.2  11.4  12.4  8.9  
35 6.8  12.0  8.0  14.4  16.1  99 17.4 22.6  19.4  31.6  22.7  
36 16.8  20.8  25.6  27.8  20.7  100 24.0 30.8  40.0  40.0  29.4  
37 35.8  38.6  40.0  40.0  30.1  101 3.8  6.0  6.4  6.8  10.8  
38 10.0  11.6  10.4  18.6  8.3  102 11.0 19.4  11.6  18.4  13.7  
39 5.4  12.2  12.4  21.4  19.2  103 22.6 24.4  40.0  40.0  33.3  
40 11.2  18.0  23.6  30.8  22.1  104 9.2  10.0  11.0  19.2  13.4  
41  5.4  11.2  6.8  11.6  11.9  105  18.2 19.0  31.0  29.4  24.5  
42 7.6  8.4  9.4  13.6  12.8  106 6.8  12.4  14.0  17.8  14.1  
43 6.6  9.8  9.6  12.0  9.3  107 7.4  11.6  10.0  16.0  11.0  
44 32.4  37.2  40.0  40.0  18.2  108 9.2  10.6  12.4  14.4  12.7  
45 7.8  14.0  11.0  17.8  31.3  109 29.4 23.6  39.8  40.0  37.4  
46 17.8  26.6  34.2  40.0  22.8  110 6.8  7.8  9.8  12.8  10.9  
47 22.0  27.8  38.2  39.4  23.6  111 12.4 14.6  15.8  19.8  16.9  
48 14.4  15.8  18.8  23.8  14.9  112 8.2  9.8  9.2  16.0  14.5  
49 15.8  18.4  21.4  24.0  24.9  113 16.4 20.8  25.2  30.4  24.9  
50 7.4  12.8  10.2  17.0  14.3  114 9.4  11.4  12.0  21.8  14.3  
51 16.2  29.0  21.6  29.8  24.1  115 16.4 22.4  33.2  36.8  25.1  
52 6.0  7.4  7.6  9.8  8.6  116 7.0  11.4  13.8  17.4  11.2  
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53 12.2  15.4  16.2  18.8  17.8  117 10.4 12.6  14.8  23.8  18.0  
54 11.6  12.0  9.8  13.0  8.9  118 5.6  8.2  10.2  8.6  7.7  
55 17.8  22.6  38.0  31.0  24.8  119 10.8 11.8  17.8  21.2  19.9  
56 13.2  16.8  18.6  23.4  20.7  120 9.6  15.8  14.4  19.4  18.6  
57 4.4  7.2  8.2  9.8  14.3  121 5.0  6.8  7.4  9.4  6.0  
58 16.2  21.8  28.2  32.6  27.2  122 9.8  12.2  12.4  15.4  13.5  
59 11.4  19.4  28.8  32.8  22.3  123 13.8 18.0  16.4  21.0  19.3  
60 11.2  13.0  18.8  22.6  21.9  124 8.8  12.8  9.8  11.8  13.3  
61 8.6  11.4  7.2  10.2  7.5  125 15.8 21.0  35.4  39.8  27.3  
61 20.4  26.2  31.0  32.8  25.8  126 10.8 16.6  15.6  23.2  16.5  
63 7.0  8.8  11.6  9.4  12.0  127 9.0  10.6  10.0  16.8  11.9  
64 14.6  17.4  12.8  16.8  14.7  128 8.8  12.4  10.0  10.8  11.3  
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Abstract—The well known fuzzy measures, λ-measure and 

P-measure, have only one formulaic solution. Two multivalent fuzzy 
measures with infinitely many solutions were proposed by our 
previous works, called L-measure and δ-measure, but the former do 
not include the additive measure as the latter and the latter has not so 
many measure solutions as the former. Due to the above drawbacks, in 
this paper, an improved fuzzy measure composed of above both, 

denoted Lδ -measure, is proposed. For evaluating the Choquet 

integral regression models with our proposed fuzzy measure and other 
different ones, a real data experiment by using a 5-fold 
cross-validation mean square error (MSE) is conducted. The 
performances of Choquet integral regression models with fuzzy 

measure basedLδ  -measure, L-measure, δ-measure, λ-measure, and 

P-measure, respectively, a ridge regression model, and a multiple 
linear regression model are compared. Experimental result shows that 
the Choquet integral regression models with respect to extensional 
L-measure based on γ-support outperforms others forecasting models.  
 

Keywords—Lambda-measure, P-measure, Delta-measure, 
Gamma-support, composed fuzzy measure, Choquet integral 
regression model.  
 
 

I. INTRODUCTION 

hen there are interactions among independent variables, 
traditional multiple linear regression models do not 
perform well enough. The traditional improved methods 

exploited ridge regression models [1]. In this paper, we suggest 
using the Choquet integral regression models [7-15] based on 
some single or compounded fuzzy measures [2-5, 7-15 ] to 
improve this situation. The well-known fuzzy measures, 
λ-measure [2-4] and P-measure [5] have only one formulaic 
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solution of fuzzy measure, the former is not a closed form, and 
the latter is not sensitive enough. Two multivalent fuzzy 
measures with infinitely many solutions were proposed by our 
previous works, called L-measure [7-9] and δ-measure [10,11], 
but L-measure do not include the additive measure and 
δ-measure has not so many measure solutions as L-measure. 
Due to the above drawbacks, in this paper, an improved fuzzy 
measure composed of above two multivalent fuzzy measures, 
denoted Lδ -measure, is proposed. This improved multivalent 

fuzzy measure is not only including the additive measure, but 
also having the same infinitely many measure solutions as 
L-measure. For evaluating the Choquet integral regression 
models with our proposed fuzzy measure and other different 
ones, a real data experiment by using a 5-fold cross-validation 
mean square error (MSE) is conducted. The performances of 
Choquet integral regression models with fuzzy measure based 
Lδ -measure, L-measure, δ-measure, λ-measure, and P-measure, 

respectively, a ridge regression model, and a multiple linear 
regression model are compared.  

This paper is organized as follows: The multiple linear 
regression and ridge regression [1] are introduced in section II; 
two well known fuzzy measure, λ-measure [2] and P-measure 
[5], are introduced in section III; our new measure, δ-measure, 
is introduced in section IV; the fuzzy support, γ-support [7] is 
described in section V; the Choquet integral regression model 
[6-8] based on fuzzy measures are described in section VI; 
experiment and result are described in section VII; and final 
section is for conclusions and future works. 
 

II. THE MULTIPLE LINEAR REGRESSION, RIDGE REGRESSION  

Let ( )2,  ~ N 0, nY X I= +β ε ε σ  be a multiple linear 

model, ( ) 1ˆ X X X Y
−′ ′=β  be the estimated regression 

coefficient vector, and ( ) 1ˆ
k nX X kI X Y

−′ ′= +β  be the 

estimated ridge regression coefficient vector, Hoerl, Kenard and 
Baldwin [1] suggested 
 

                            
2ˆˆ

ˆ ˆ
n

k =
′

σ
β β

                       (1) 

 

III.  FUZZY MEASURES 

The two well known fuzzy measures, the λ-measure proposed 
by Sugeno in 1974, and P-measure proposed by Zadah in 1978, 
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are concisely introduced as follows.   
 

A. Axioms of Fuzzy Measures 

Definition 1 fuzzy measure  [2-4] 
A fuzzy measure µ  on a finite set X is a set function 

[ ]: 2 0,1Xµ →  satisfying the following axioms:  

 

1) ( ) ( )0 , 1Xµ φ µ= =  (boundary conditions)     (2) 

2) ( ) ( )A B A Bµ µ⊆ ⇒ ≤  (monotonicity)          (3) 

 

B. Singleton Measures 

Definition 2 singleton measure [2-7] 
A singleton measure of a fuzzy measure µ  on a finite set X is 

a function [ ]: 0,1s X →  satisfying:  

( ) { }( ),s x x x Xµ= ∈                          (4) 

( )s x  is called the fuzzy density of singleton x . 

 

C. λ-measure 

Definition 3  λ-measure [3] 
For a given singleton measures s,  λ-measure,gλ , is a fuzzy 

measure on a finite set X, satisfying: 

, 2 , ,XA B A B A B Xφ∈ = ≠∩ ∪  

 
( )

( ) ( ) ( ) ( )
g A B

g A g B g A g B

λ

λ λ λ λλ
⇒

= + +

∪
   (5) 

( ) ( ) { }( )
1

1 1 0,
n

i i i
i

s x s x g xλλ λ
=

 +  = + > = ∏   (6) 

   Where the real number, λ, is also called the determine 
coefficient of λ-measure. 
 

Note that once the singleton measure is known, we can 
obtain the values of λ uniquely by using the previous polynomial 
equation. In other words, λ-measure has a unique solution 
without closed form. Moreover, for given singleton measures s, 

( )( ) 1 ( )
x X x A

If s x then g A s xλ
∈ ∈

= =∑ ∑ , in other word, 

if ( ) 1
x X

s x
∈

=∑ then λ-measure is just the additive measure 

 
 

D. P-measure  

Definition 4  P-measure [5] 
For given a singleton measures s,  P-measure,Pg , is a fuzzy 

measure on a finite set X, satisfying:  

( ) ( ){ } { }( ){ }
2

max max

X

P P
x A x A

A

g A s x g x

∀

∈ ∈

∈

⇒ = =
        (7) 

Note that for any subset of X, A, P-measure considers only the 
maximum value and will lead to insensitivity. 
 

E. L-measure  

Definition 5  L-measure [7-9] 
For given a singleton measure ( )s x , L-measure, Lg , is a fuzzy 

measure on a finite set X, X n= , satisfying: 

1)    [ )0,L ∈ ∞     (8) 

2)  , ( 1) 0A X n A A L∀ ⊂ − + − > ⇒  

( )
( ) ( )

( ) ( )

( 1) 1 max
( ) max

1

x A
x A

L
x A

x X

A L s x s x
g A s x

n A A L s x

∈∈

∈

∈

  − −   
 = +   − + − 

∑

∑
    (9) 

Where the real number, L, is also called the determine 
coefficient of L-measure. 
Theorem 1 [7-9] 
(i) for each [0, )L ∈ ∞ , L-measure is a fuzzy measure, in other 

words, L-measure has infinitely many solutions of fuzzy 
measures, for each [0, )L ∈ ∞ . 

(ii) [0, )L∈ ∞ , L-measure is an increasing function on real 

number L. 
(iii) if 0L =  then L-measure is just the P-measure 
 

F. δ-measure  

Definition 6    δ-measure [10,11] 
For given singleton measure ( )s x , a δ-measure, gδ , is a fuzzy 

measure on a finite set X, X n= , satisfying: 

1) [ ]1,1 , ( ) 1
x X

s xδ
∈

∈ − =∑                                                     (10) 

2) ( ) ( )0, 1g g Xδ δφ = =                                                     (11) 

3) ,A X A X∀ ⊂ ≠ ⇒  

( ) ( )
( )

( )
1 ( )

1 max max
1 ( )

x A

x A x A

x A

s x

g A s x s x
s x

δ

δ
δ δ

δ
∈

∈ ∈

∈

+
 = + −   +

∑

∑
 

                                                                                     (12) 
Where the real number, δ, is also called the determine 
coefficient of δ-measure. 

 
Theorem 2 [11] 

(i) [ ]1,1δ ∈ − ,δ-measure is an increasing function on δ 

(ii) if 1δ = − , then δ-measure is just the P-measure 

(iii) if 0δ = , then δ-measure is just the additive measure 

(iv) if 1 0δ− < < , then δ-measure is a sub-additive 
measure 

(v) if 0 1δ< < , then δ-measure is a supper-additive 
measure. 
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(vi) If ( ) 1
x X

s x
∈

=∑ and 0δ =  then δ -measure is just the 

λ -measure 

  (vii) P -measure, additive measure and λ -measure are the 
special cases of  δ -measure 

 

IV.  COMPARISON BETWEEN TWO FUZZY MEASURES  

Definition 7 1 2measure measureµ µ− ≤ − , 

2 1measure measureµ µ− ≥ −  [8,9] 

For any given fuzzy density function, ( )s x , on a finite set, 

X,  If 1µ and 2µ  are two fuzzy measures, satisfying 

( ) ( )
1 2

,g A g A A Xµ µ≤ ∀ ⊂ , then we say that 1µ -measure is not 

larger than 2µ -measure, or 2µ -measure is not smaller 

than 1µ -measure, denoted as1 2measure masureµ µ− ≤ − ,or 

2 1measure measureµ µ− ≥ −  

Theorem 3 [8,9] 
   For any given fuzzy density function,( )s x , on a finite set, X, 

P-measure is not larger than any other fuzzy measure, µ , that is 

P measure measureµ− ≤ −  

 

V. COMPOSED MEASURE OF L- METHOD AND- 
DELTA-MEASURES 

A. Definition of Generalized L-measure 

Definition 8 Generalized L-measure 

For given singleton measure ( )s x , a generalized  L-measure 

based on a fuzzy measure, μ, Lµ , is a fuzzy measure on a finite 

set X, X n= , satisfying: 

1)    [ )0,L ∈ ∞     (13) 

2)   , ( 1) 0A X n A A L∀ ⊂ − + − > ⇒  

( )
( ) ( )
( ) ( )

( 1) 1 max
( ) max

1
x A

L
x A

A L A s x
g A s x

n A A L Xµ

µ

µ
∈

∈

   −  −     = +   − + − 

            

(14) 
Where the real number, L, is also called the determine 
coefficient of Lµ -measure. 

 
Theorem 4 
(i) For each [0, )L ∈ ∞ , Lµ -measure is a fuzzy measure, 

In other words, Lµ -measure has infinite many fuzzy 

measures with determine coefficient L, [0, )L ∈ ∞ . 

(ii) [0, )L ∈ ∞ Lµ -measure is an increasing function on  

L, 
(iii) if 0L =  then Lµ -measure is just theμ-measure 

(iv) if μ-measure is the P-measure then Lµ -measure is just the 

L-measure 

(v) for each [0, )L∈ ∞ ,  

P-measure≤  L-measure≤ Lµ -measure 

Proof.  
(i) the boundary conditions are trivial, Now to prove the 
monotonicity.  
Let , 2 ,XA B A B∀ ∈ ⊂  to prove ( ) ( )L Lg A g B

µ µ
≤              (15) 

If ( ) ( )max max
x A x B

s x s x
∈ ∈

   =    ,  

since 
( )

( )
( )

( )
( 1) ( 1)

1 1

B L B A L A

n B B L n A A L

µ µ− −
≥

   − + − − + −   

                  (16) 

We can obtain ( ) ( )L Lg B g A
µ µ

≥  

If ( ) ( )max max , 0
x B x A

s x s x a a
∈ ∈

   = + >                                       (17) 

( ) ( )
( ) ( )

( ) ( )

( )
( )

( )
( )

( )
( )

( 1) 1 max
1

1

1 max( 1) ( 1)

1 1

x A
L L

x A

B L B s x
g B g A a

n B B L X

s xB L B A L A

Xn B B L n A A L

µ µ

µ

µ

µ µ
µ

∈

∈

  − −     − = −  − + −   

 −   − −    + −
    − + − − + −    

 

                                                                                         (18) 

Since    
( ) ( )

( ) ( )
( 1) 1 max

1 0
1

x A
B L B s x

n B B L X

µ

µ
∈

 − −    − ≥
 − + − 

                (19) 

and                  
( )

( )
1 max

0x A
s x

Xµ
∈

 −     ≥                                 (20) 

We can also obtain that ( ) ( )L Lg B g A
µ µ

≥ , therefore 

Lµ -measure is a fuzzy measure. 

(ii)     

( ) ( )
( ) ( )
( ) ( )

( )
( ) ( )

( ) ( ) 2

( 1) 1 max
( ) max

1

( 1) 1 max
0

1

x A
L

x A

x A

A L A s x
f L g A s x

n A A L X

A A s x n A
f L

X n Al A L

µ

µ

µ

µ

µ

∈

∈

∈

   −  −     = = +   − + − 

  − −  −    ′⇒ = ≥
 − + − 

      

(21) 
Hence Lµ -measure is an increasing function on L. 

(iii), (iv) and (v) are trivial. 
 

B. Definition of Lδ -measure 

Definition 9 Lδ -measure 

For given singleton measure ( )s x , the composed 

measure of L-measure and δ-measure , denoted 
Lδ -measure, Lg

δ
, is a fuzzy measure on a finite set X, 

X n= , satisfying: 

1) [ )1, , ( ) 1
x X

L s x
∈

∈ − ∞ =∑                                                (22) 

2)       ( ) ( )0, 1L Lg g X
δ δ

φ = =                                     (23) 
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3) A X∀ ⊂ ⇒  

( )

( )

( ) ( ) ( )
( ) ( ) ( ]

( ) ( ) ( )

( ) ( )
( ) ( )

                         max                                    1

1 1 max
max 1,0

1

1 1

   0,
1

 

x A

x A
x A

L
x A

x A

x A x A

x A

x X

s x if L

L s x L s x
g A L s x if L

L s x

L A s x s x

s x if L
n A L A s x

δ

∈

∈∈

∈

∈

∈ ∈

∈
∈




 = −

  + +  = − ∈ − +

 − − 
  + ∈ ∞

 − + − 


∑

∑

∑ ∑
∑

∑









   (24) 
 

C. Important Properties of Lδ -measure 

Theorem 5   Important Properties of Lδ -measure 

(i) [ 1, )L∈ − ∞ , Lδ -measure is a fuzzy measure family 

(ii) [ 1, )L ∈ − ∞ , Lδ -measure is an increasing function on L 

(iii) if 1L = −  then Lδ -measure is just the P-measure 

(iv) if 0L =  then Lδ -measure is just the additive measure 

(v) if 1 0L− < <  then Lδ -measure is a sub-additive measure 

(vi) if 0 L< < ∞  then Lδ -measure is a supper-additive 

measure 

(vii) If ( ) 1
x X

s x
∈

=∑ and 0L =  then Lδ -measure is just the 

λ -measure 
(viii) P -measure, additive measure and λ -measure are the 

special cases of  Lδ -measure 

Proof. 
(i) if [ 1,0)L∈ − , then Lδ -measure is a special case of 

δ-measure, since δ-measure is a fuzzy measure, then 

Lδ -measure is also a fuzzy measure.  

if [0, )L∈ ∞ , then Lδ -measure is a special case of 

generalized  L-measure based on the additive  measure, since 
any generalized  L-measure is also a fuzzy measure, then 

Lδ -measure is also a fuzzy measure.  

Therefore, for each [ 1, )L∈ − ∞ , Lδ -measure is a fuzzy 

measure. 

(ii) if [ 1,0)L ∈ − , then Lδ -measure is a special case of 

δ-measure, since δ-measure is  an increasing function with 

upper bound, additive measure , then Lδ -measure is also an 

increasing function with upper bound, additive measure.  

if [0, )L∈ ∞ , then Lδ -measure is a special case of 

generalized  L-measure based on the additive  measure, since  
generalized  L-measure based on the additive  measure is also 
an increasing function with lower bound, additive measure, 

then Lδ -measure is also an increasing function with lower 

bound, additive measure.  

Therefore, for each [ 1, )L∈ − ∞ , Lδ -measure is also an 

increasing function on L’ 
(iii), (iv), (v), (vi), (vii) and (viii) are trivial. 

VI.  Γ- SUPPORT 

Definition 10: γγγγ----supportsupportsupportsupport [7] 
For given singleton measure s of a fuzzy measure µ on a finite 

set X, if ( ) 1
x X

s x
∈

=∑ , then s is called a fuzzy support measure 

of µ, or a fuzzy support of µ, or a support of µ. One of fuzzy 
supports is introduced as below. 

Let µ be a fuzzy measure on a finite set { }1 2, ,..., nX x x x= , iy  

be global response of subject i  and ( )i jf x  be the evaluation 

of subject i  for singleton jx , satisfying: 

( )0 1, 1,2,..., , 1,2,...,i jf x i N j n< < = =          (25) 

( ) ( )( )
( )( )

1

1
, 1,2,...,

1

j

j n

k
k

r f x
x j n

r f x

γ

=

+
= =

 + ∑
         (26) 

where  ( )( ) , j

j

y x

j
y x

S
r f x

S S
=                                   (27)                                                 

2

2

1 1

1 1n N

y i i
i i

S y y
N N= =

 
= − 

 
∑ ∑                      (28) 

     ( ) ( )
2

2

1 1

1 1
j

n N

x i j i j
i i

S f x f x
N N= =

 
= − 

 
∑ ∑             (29) 

              

( ) ( ),
1 1 1

1 1 1
j

n N N

y x i i i j i j
i i i

S y y f x f x
N N N= = =

  
= − −  

  
∑ ∑ ∑     (30) 

satisfying ( )0 1jxγ≤ ≤  and ( )
1

1
n

j
j

xγ
=

=∑        (31) 

then the function [ ]: 0,1Xγ →  satisfying { }( ) ( )x xµ γ= , 

x X∀ ∈  is a fuzzy support of µ, called γ-support of µ. 
 

 

VII.  CHOQUET INTEGRAL REGRESSION MODELS 

A. Choquet Integral   

Definition 11 Choquet Integral [2-6] 
Let µ be a fuzzy measure on a finite set X. The Choquet integral 
of :if X R+→  with respect to µ for individual i  is denoted by  

( )( ) ( )( ) ( )( )1
1

, 1,2,...,
n

i
C i i ij j j

j

f d f x f x A i Nµ µ−
=

 = − =  ∑∫  

(32) 
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where ( )( )0 0if x = , ( )( )i jf x  indicates that the indices have 

been permuted so that 

  ( )( ) ( )( ) ( )( )1 20 ...i i i nf x f x f x≤ ≤ ≤ ≤              (33) 

( ) ( ) ( ) ( ){ }1, ,...,j j j nA x x x+=                          (34) 

 
 

B. Choquet Integral Regression Models  

Definition 12 Choquet Integral Regression Models [7-15] 

Let 1 2, ,..., Ny y y  be global evaluations of N objects and 

( ) ( ) ( )1 2, ,..., , 1,2,...,j j N jf x f x f x j n= , be their 

evaluations of jx , where : , 1,2,...,if X R i N+→ = . 

Let µ be a fuzzy measure, , Rα β ∈ , 

                    

( )2, ~ 0, , 1,2,...,i C i i iy f dg e e N i Nµα β σ= + + =∫     (35) 

( ) ( )2

,
1

ˆˆ , argmin
N

i C i
i

y f dgµα β
α β α β

=

 = − − 
 
∑ ∫    (36) 

then ˆˆˆ , 1,2,...,i iy f dg i Nµα β= + =∫  is called the 

Choquet integral regression equation of µ, where 
ˆ /yf ffS Sβ =                                             (37) 

1 1

1 1ˆˆ
N N

i i
i i

y f dg
N N µα β

= =

= −∑ ∑∫                 (38) 

                       

1 1 1

1 1

1

N N N

i i i k
i i k

yf

y y f dg f dg
N N

S
N

µ µ∗ ∗

= = =

   
− −   

      =
−

∑ ∑ ∑∫ ∫
                          

(39) 
2

1 1

1

1

N N

i k
i k

ff

f dg f dg
N

S
N

µ µ∗∗

= =

 
− 

  =
−

∑ ∑∫ ∫
            (40) 

 

VIII.  EXPERIMENT AND RESULT 

A. Education Data 

The total scores of 60 students from a junior high school in 
Taiwan are used for this research [9-13]. The examinations of 
four courses, physics and chemistry, biology, geoscience and 
mathematics, are used as independent variables, the score of the 
Basic Competence Test of junior high school is used as a 
dependent variable.  

The data of all variables listed in Table III is applied to 
evaluate the performances of five Choquet integral regression 

models with P-measure, λ-measure and δ-measure, L-measure 

measure andLδ -measure based on γ-support respectively, a 

ridge regression model, and a multiple linear regression model 
by using 5-fold cross validation method to compute the mean 
square error (MSE) of the dependent variable. The formula of 
MSE is 

2

1

1
ˆ( )

N

i i
i

MSE y y
N =

= −∑                         (41) 

The singleton measures, γ-support of the P-measure, 
λ-measure, δ-measure, L-measure andLδ -measure are listed as 

follows which can be obtained by using the formula (26). 
 

{0.2488, 0.2525, 0.2439, 0.2547}                 (42) 
 

For any fuzzy measure, µ-measures, once the fuzzy support 
of the µ-measure is given, all event measures of µ can be found, 
and then, the Choquet integral based on µ and the Choquet 
integral regression equation based on µ can also be found by 
using above corresponding formulae. 

The experimental results of seven forecasting models are 
listed in Table I. We find that the Choquet integral regression 
model with Lδ -measure based on γ-support outperforms other 

forecasting regression models. 

TABLE I  MSE OF REGRESSION MODELS 

Regression model 

measure 

5-fold CV 
MSE 

Lδ  47.5722 

L 48.4610 

δ 48.7672 

λ 49.1832 

Choquet 
Integral 

Regression 
model 

p 53.9582 

Ridge regression 59.1329 

Multiple linear 
regression 

65.0664 

 

B. Fat Data  

 
In this study, anthropometric dimensions were measured 

following a standard protocol [11, 16]. High was measured to 
the nearest 0.1 cm using anthropometers. Body weight was 
measured to the nearest 0.1 kg at the same time the bioelectric 
impedance was measured using a body fat analyzer (TBF310; 
Tanita, Tokyo, Japan) to estimate the percentage of body fat 
(%fat). Skinfold thicknesses at biceps, triceps, subscapular, and 
suprailiac of the right side of body were measured with GMP 
skinfold calipers (Siber Hegener and Co. Ltd, Switzerland). The 
measurements were performed by one experienced operator that 
took two repeated measurements at the test site of the same 
subject. The mean of the two readings from each site was used 
to calculate body composition. 
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A real data set with 128 samples from a elementary school 
in Taiwan including the independent variables, 4 Skinfold 
determination values, and the dependent variable, the 
measurements of the BIA of each student listed in Table IV is 
applied to evaluate the performances of three Choquet integral 
regression models with P-measure, λ-measure, δ -measure, 

L-measure  andLδ -measure based on γ-support respectively, a 

ridge regression model, and a multiple linear regression model 
by using 5-fold cross validation method to compute the mean 
square error (MSE)  of the dependent variable.  

The singleton measures, γ-support of the P-measure, 
λ-measure, δ-measure, L-measure  andLδ -measure are listed as 

follows which can be obtained by using the formula (26). 
 

{0.2396, 0.2466, 0.254, 0.2596}                     (43) 
 

The formulas of MSE is by using 5-fold cross validation 
method to compute the mean square error (MSE) of the depen 
dent variable.  

TABLE II  MSE OF REGRESSION MODELS 

Regression model 

measure 

5-fold CV 
MSE 

Lδ  13.7136 

L 14.2344 

δ 14.4228 

λ 14.9218 

Choquet 
Integral 

Regression 
model 

p 18.3846 

Ridge regression 15.7434 

Multiple linear 
regression 

16.1122 

 
The experimental results of seven forecasting models are 

listed in Table II. We also find that the Choquet integral 
regression model with Lδ -measure based on γ-support 

outperforms other forecasting regression models. 
 
 

IX.  CONCLUSION  

In this paper, a multivalent composed fuzzy measure of 
L-measure and δ-measure, called Lδ -measure, is proposed. 

This new measure is proved that it is of closed form with 
infinitely many solutions, and it can be considered as an 
extension of the two well known fuzzy measures, λ-measure and 
P-measure. Furthermore, this improved multivalent fuzzy 
measure is not only including the additive measure, but also 
having the same infinitely many measure solutions as L-measure. 
By using 5-fold cross-validation MSE, two experiments are 
conducted for comparing the performances of a multiple linear 
regression model, a ridge regression model, and the Choquet 
integral regression model with respect to P-measure, λ-measure, 
δ-measure, L-measure and our proposed Lδ -measure -measure 

based on γ-support respectively. The result shows that the 
Choquet integral regression models with respect to the proposed 
Lδ -measure based on γ-support outperforms other forecasting 

models. 
In the future, we will apply the proposed Choquet integral 

regression model with the new fuzzy measure based on 
γ-support to develop multiple classifier system. 
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TABLE III  THE DATA SET WITH FOUR COURSES AND SCIENCE SCORES OF THE BCT 

No. C1 C2 C3 C4 BCT No. C1 C2 C3 C4 BCT 

1 72 66 78 72 19 31 66 68 75 74 25 
2 86 80 82 81 35 32 68 70 74 76 40 
3 56 63 69 75 21 33 57 65 75 70 24 
4 78 86 86 86 33 34 74 70 80 75 35 
5 66 72 80 76 23 35 49 60 69 64 13 
6 68 74 77 80 28 36 51 60 63 64 18 
7 74 86 87 88 44 37 58 64 68 66 32 
8 54 56 62 68 7 38 73 78 84 81 39 
9 71 74 80 77 26 39 56 56 65 61 6 

10 68 70 80 75 33 40 61 62 70 70 25 
11 53 56 70 63 22 41 57 60 68 64 23 
12 67 70 80 75 35 42 57 64 67 70 26 
13 70 66 70 74 13 43 50 52 68 60 7 
14 60 65 75 70 23 44 84 80 76 72 49 
15 68 68 78 76 35 45 62 66 76 71 22 
16 58 66 76 71 37 46 70 74 78 82 32 
17 61 66 72 78 33 47 69 70 80 75 26 
18 68 68 80 74 26 48 63 74 74 74 42 
19 56 66 76 71 21 49 66 78 80 82 39 
20 59 62 70 78 29 50 67 70 80 75 31 
21 62 64 76 70 36 51 56 65 75 70 23 
22 71 72 78 75 26 52 50 54 66 60 18 
23 74 63 69 75 12 53 71 75 85 80 41 
24 59 70 80 76 37 54 74 77 80 85 26 
25 75 75 85 80 39 55 71 72 76 80 31 
26 73 78 84 81 24 56 60 65 75 70 21 
27 62 68 72 74 29 57 59 57 70 68 17 
28 77 74 80 76 42 58 50 56 65 68 13 
29 63 60 68 69 17 59 72 76 80 78 38 
30 56 61 75 68 22 60 81 76 78 80 33 

C1 : physics and chemistry 
C2 : biology 
C3 : geoscience 
C4 : mathematics 
BCT : Basic Competence Test of nature science 
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Table IV Measurements of BIA and four skinfold determinations of percent body fat  

No BIA 
biceps triceps Sub- 

scapular 
Sup- 

railiac 
No  BIA 

biceps triceps Sub- 
scapular 

Sup- 
railiac 

1 11.8  15.8  16.2  27.6  16.3  65 22.8  27.4  32.2  33.6  24.5  
2 17.8  20.4  12.8  35.6  23.0  66 5.4  14.4  8.0  17.2  17.5  
3 6.2  10.4  9.4  12.6  8.2  67 8.6  9.6  11.4  14.4  14.8  
4 7.0  10.2  5.6  10.6  13.6  68 7.4  9.6  8.0  10.2  13.4  
5 5.2  10.8  12.0  13.8  11.8  69 20.2  29.2  28.2  40.0  23.9  
6 20.2  24.6  39.8  40.0  34.7  70 28.4  30.6  38.6  39.8  39.5  
7 14.8  18.8  22.4  24.8  18.6  71 6.8  10.4  8.8  14.6  15.2  
8 12.4  18.2  20.2  27.6  18.4  72 11.0  12.4  10.4  14.4  11.7  
9 17.0  20.6  21.2  27.8  21.6  73 20.8  30.8  38.8  40.0  37.7  
10 16.6  22.6  18.8  32.6  16.6  74 25.0  27.6  40.0  40.0  29.6  
11 10.2  13.4  8.4  12.8  15.1  75 4.8  6.2  5.6  7.0  9.7  
12 21.0  26.7  36.2  40.0  23.9  76 8.4  7.0  8.0  11.8  15.6  
13 10.0  13.4  17.4  17.8  18.1  77 11.0  14.0  10.0  12.4  17.7  
14 9.8  13.8  11.6  19.2  15.5  78 10.6  11.6  7.0  14.4  12.9  
15 8.6  10.8  11.4  14.4  8.5  79 12.4  16.8  17.0  25.8  14.9  
16 21.8  25.6  36.6  36.8  31.7  80 11.4  14.0  20.8  26.4  25.1  

17 25.2  29.4  30.2  30.6  31.2  81 12.8  15.8  20.2  19.8  16.4  

18 10.2  11.0  10.2  14.8  12.2  82 12.0  15.6  16.0  22.8  17.3  
19 10.4  15.8  13.0  25.6  16.6  83 13.0  20.4  24.0  27.0  26.2  
20 17.6  22.6  23.2  34.6  23.2  84 14.2  15.4  22.4  22.8  18.9  
21 12.6  12.4  14.2  16.0  14.2  85 11.0  16.4  14.2  15.8  17.9  
22 9.0  11.2  9.4  11.8  9.3  86 22.4  29.8  35.0  36.2  28.5  
23 12.2  19.2  17.4  27.8  19.7  87 6.4  7.6  8.6  11.4  12.1  
24 4.6  7.0  8.8  11.2  7.2  88 6.8  10.6  9.6  14.6  12.2  
25 6.4  8.8  11.0  12.6  10.8  89 16.2  18.4  27.2  27.4  24.9  
26 23.8  29.0  37.0  35.0  30.7  90 22.4  26.8  25.4  33.4  30.4  
27 8.4  15.8  17.8  23.0  21.6  91 9.6  11.2  10.4  18.0  11.7  
28 12.2  16.6  16.4  20.6  18.7  92 10.8  17.2  24.0  24.8  21.9  
29 7.2  12.8  8.6  18.6  15.2  93 13.0  16.2  12.4  18.4  14.2  
30 21.4  31.2  31.4  39.4  28.6  94 5.6  12.4  11.4  15.6  14.5  
31 18.2  23.0  40.0  40.0  28.2  95 19.4  25.0  36.2  39.0  29.9  
32 9.2  12.6  40.0  17.8  16.0  96 14.4  22.4  29.8  35.0  24.8  
33 10.2  18.8  17.8  20.8  18.4  97 25.4  29.4  37.0  40.0  24.6  
34 19.2  24.4  35.2  35.0  34.1  98 9.4  11.2  11.4  12.4  8.9  
35 6.8  12.0  8.0  14.4  16.1  99 17.4  22.6  19.4  31.6  22.7  
36 16.8  20.8  25.6  27.8  20.7  100 24.0  30.8  40.0  40.0  29.4  
37 35.8  38.6  40.0  40.0  30.1  101 3.8  6.0  6.4  6.8  10.8  
38 10.0  11.6  10.4  18.6  8.3  102 11.0  19.4  11.6  18.4  13.7  
39 5.4  12.2  12.4  21.4  19.2  103 22.6  24.4  40.0  40.0  33.3  
40 11.2  18.0  23.6  30.8  22.1  104 9.2  10.0  11.0  19.2  13.4  
41      5.4  11.2  6.8  11.6  11.9  105      18.2  19.0  31.0  29.4  24.5  
42 7.6  8.4  9.4  13.6  12.8  106 6.8  12.4  14.0  17.8  14.1  
43 6.6  9.8  9.6  12.0  9.3  107 7.4  11.6  10.0  16.0  11.0  
44 32.4  37.2  40.0  40.0  18.2  108 9.2  10.6  12.4  14.4  12.7  
45 7.8  14.0  11.0  17.8  31.3  109 29.4  23.6  39.8  40.0  37.4  
46 17.8  26.6  34.2  40.0  22.8  110 6.8  7.8  9.8  12.8  10.9  
47 22.0  27.8  38.2  39.4  23.6  111 12.4  14.6  15.8  19.8  16.9  
48 14.4  15.8  18.8  23.8  14.9  112 8.2  9.8  9.2  16.0  14.5  
49 15.8  18.4  21.4  24.0  24.9  113 16.4  20.8  25.2  30.4  24.9  
50 7.4  12.8  10.2  17.0  14.3  114 9.4  11.4  12.0  21.8  14.3  
51 16.2  29.0  21.6  29.8  24.1  115 16.4  22.4  33.2  36.8  25.1  
52 6.0  7.4  7.6  9.8  8.6  116 7.0  11.4  13.8  17.4  11.2  
53 12.2  15.4  16.2  18.8  17.8  117 10.4  12.6  14.8  23.8  18.0  
54 11.6  12.0  9.8  13.0  8.9  118 5.6  8.2  10.2  8.6  7.7  
55 17.8  22.6  38.0  31.0  24.8  119 10.8  11.8  17.8  21.2  19.9  
56 13.2  16.8  18.6  23.4  20.7  120 9.6  15.8  14.4  19.4  18.6  
57 4.4  7.2  8.2  9.8  14.3  121 5.0  6.8  7.4  9.4  6.0  
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58 16.2  21.8  28.2  32.6  27.2  122 9.8  12.2  12.4  15.4  13.5  
59 11.4  19.4  28.8  32.8  22.3  123 13.8  18.0  16.4  21.0  19.3  
60 11.2  13.0  18.8  22.6  21.9  124 8.8  12.8  9.8  11.8  13.3  
61 8.6  11.4  7.2  10.2  7.5  125 15.8  21.0  35.4  39.8  27.3  
61 20.4  26.2  31.0  32.8  25.8  126 10.8  16.6  15.6  23.2  16.5  
63 7.0  8.8  11.6  9.4  12.0  127 9.0  10.6  10.0  16.8  11.9  
64 14.6  17.4  12.8  16.8  14.7  128 8.8  12.4  10.0  10.8  11.3  
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A theoretical approach to the completed L-fuzzy measure  

 
Hsiang-Chuan Liu 

Department of Bioinformatics, Asia University, Taiwan 

             

Abstract The well known fuzzy measures, λ-measure and P-measure, have only one 
formulaic solution. An multivalent fuzzy measure with infinitely many solutions of closed form 
based on P-measure was proposed by our previous work, called L-measure, but L-measure is not 
a completed multivalent fuzzy measure, In this paper, A further improved fuzzy measure, called 
completed L-measure, is proposed. Some important properties of this new multivalent fuzzy 
measure are also proposed. 

 

Key words  λ-measure , P-measure, L-measure, completed L-measure 

 

1 Introduction 
When interactions among independent variables exist in forecasting problems, the performance of 

the multiple linear regression models is not good enough. The traditional improved methods exploited 
the ridge regression models [1]. Recently, the Choquet integral regression models based on some 
univalent or multivalent fuzzy measures [2,3,4] were used to improve this situation. The well known 
fuzzy measures, λ-measure [5] and P-measure [6], have only one formulaic solution of fuzzy measure. 
A multivalent fuzzy measure with infinitely many solutions of closed form based on P-measure was 
proposed by our previous work, called L-measure[3], but it is not a completed multivalent fuzzy 
measure. In this paper, an improved multivalent fuzzy measure, called completed L-measure, is 
proposed. Some important properties of this new multivalent fuzzy measure are also discussed. 

This paper is organized as followings: The basis concepts of fuzzy measures are introduced in 
section 2; Comparison between two fuzzy measures is introduced in section 3; L-measures is 
introduced in section 4; completed L –measure and its properties is described in section 5; and final 
section is for conclusions and the future works. 

 

2 Fuzzy Measures 

The well known fuzzy measures, the λ-measure proposed by Sugeno in 1974, and P-measure 

proposed by Zadah in 1978, are concise introduced as follows  

2.1 Definition of fuzzy measures [2, 5] 

A fuzzy measure μ  on a finite set X is a set function [ ]: 2 0,1Xgμ →  

satisfying the following axioms: ( ) ( )0 , 1g g Xμ μφ = = (boundary conditions)              (1) 

( ) ( )A B g A g Bμ μ⊆ ⇒ ≤  (monotonicity)                          (2) 

2.2 Fuzzy density function [2, 6] 
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A fuzzy density function ( )s x of a fuzzy measure μ  on a finite set X is a measurable function 

[ ]: 0,1s X →  satisfying:          ( ) { }( ) ,s x g x x Xμ= ∈                                (3) 

2.3 λ-measure [5] 

For each given fuzzy density function ( )s x , a λ-measure on a finite set X is a measurable function,  

[ ]: 2 0,1Xgλ → , satisfying:  

(i) , 2 , ,XA B A B A B Xφ∈ = ≠I U  ( ) ( ) ( ) ( ) ( )g A B g A g B g A g Bλ λ λ λ λλ⇒ = + +U         (4) 

(ii) ( ) ( ) { }( )1 1 0,
x X

s x s x g xλλ λ
∈

+ = + > =⎡ ⎤⎣ ⎦∏  (5) 

2.4 P-measure [6] 

For each given fuzzy density function, ( )s x , a P-measure on a finite set X is a set function,  

[ ]: 2 0,1X
Pg → , satisfying: ( ) ( ){ } { }( )2 max maxX

P Px A x A
A g A s x g x∀

∈ ∈
∈ ⇒ = =              (6)  

 

3 Comparison between two fuzzy measures [4] 
Definition 2 1 2measure masureμ μ− ≤ − , 2 1measure measureμ μ− ≥ −  

For any given fuzzy density function, ( )s x , on a finite set, X,  If 1μ and 2μ  are two fuzzy 

measures, satisfying ( ) ( )
1 2

,g A g A A Xμ μ≤ ∀ ⊂ , then we say that 1μ -measure is not larger 

than 2μ -measure, or 2μ -measure is not smaller than 1μ -measure, denoted 
as 1 2measure masureμ μ− ≤ − ,or 2 1measure measureμ μ− ≥ −  

Theorem 1 For any given fuzzy density function, ( )s x , on a finite set, X, P-measure is not larger than 

any other fuzzy measure, μ , that is P measure measureμ− ≤ −  

Proof.  For the same given fuzzy density function, ( )s x , We have { }( ) { }( ) ( ) ,Pg x g x s x x Xμ= = ∀ ∈  

Let A X∀ ⊂ , if | | 1A ≤ , it is trivial, now suppose | | | |A k X= ≤ , and { }1 2, ,..., kA x x x X= ⊂  

From the monotonicity, we have 

( ) { }( ) { }( ) { }( ) { }( )
{ }( ) { }( ) { }( ) { }( )

{ }( ) { }( ) { }( ) { }( ) ( )

1 2 1 2

1 2 1 2

1 2 1 2

, ,..., , ,...,

, ,..., max , ,...,

max , ,..., , ,..,

k k

k k

P P P k P k P

g A g x x x g x g x g x

g x x x g x g x g x

g x g x g x g x x x g A

μ μ μ μ μ

μ μ μ μ

= ≥

⎡ ⎤⇒ ≥ ⎣ ⎦
⎡ ⎤= = =⎣ ⎦

             (7) 

That is ( ) ( )Pg A g Aμ ≥ , the proof is completed 

Definition 3 B- measure [4] 

For any given fuzzy density function, ( )s x , on a finite set, X, a B-measure is a set function,  
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[ ]: 2 0,1X
Bg → ,  satisfying:     ( ) ( ) { }

0
,

1 1,
B

A
g A s x A x x X

A A X

φ⎧ =
⎪⎪= = ∈⎨
⎪ > ⊂⎪⎩

                 (8) 

Theorem 2 For any given fuzzy density function, ( )s x , on a finite set, X, B-measure is not smaller 

than any fuzzy measure, μ , that is B measure measureμ− ≥ −  

Proof.  It is trivial. 
 

4 L-measures [3, 4]                  
Definition 4  L-measure 

Let [ )0,L∈ ∞ , for each given fuzzy density function ( )s x  on a finite set X, a L-measure is a set 

function [ ]: 2 0,1X
Lg →  satisfying: 

, ( 1) 0A X X A A L∀ ⊂ − + − > ⇒ ( ){ }
( ) ( ){ }
( ) ( )

( 1) 1 max
( ) max

1
x Ax A

L x A

x X

A L s x s x
g A s x

X A A L s x
∈∈

∈

∈

⎡ ⎤− −⎣ ⎦
= +

⎡ ⎤− + −⎣ ⎦

∑
∑

       (9) 

Theorem 3 
(i)L-measure is an increasing continuous function on L. 
(ii)If 0L = , then L-measure is just the P-measure 
(iii)If 0L > , then L-measure is not smaller than P-measure 

 
5 Completed L-measures         
Definition 5 Completed fuzzy measure  

A fuzzy measure is completed, if the P-measure and B-measure are the lower and upper limit 
fuzzy measures of this measure, respectively. 
Theorem 4 L-measure is not a completed fuzzy measure 

Proof  Since ( ){ }
( )

( ) ( ){ }lim ( ) max 1 max ( )x A
L BL x A x A

x X

s x
g A s x s x g A

s x
∈

→∞ ∈ ∈

∈

⎡ ⎤= + − ≠⎣ ⎦

∑
∑

, the proof is completed. 

Definition 6 Completed L- measure, CL -measure 

Let [ )0,L∈ ∞ , for each given fuzzy density function ( )s x  on a finite set X, a completed 

L-measure or CL -measure is a set function [ ]: 2 0,1
C

X
Lg →  satisfying: 

, ( 1) 0A X X A A L∀ ⊂ − + − > ⇒ ( ){ }
( ) ( ){ }
( ) ( ) ( )

( 1) 1 max
( ) max

1C

x Ax A
L x A

x X x A

A L s x s x
g A s x

X A s x A L s x
∈

∈

∈

∈ ∈

⎡ ⎤− −⎣ ⎦
= +

⎡ − ⎤ + −⎣ ⎦

∑
∑ ∑

    (10) 

Theorem 5 CL -measure is a fuzzy measure 

Proof:  

(I)   (To prove the boundary conditions; ( )0 1,
CLg A A X≤ ≤ ∀ ⊂ ) 
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  If 1A ≤ , It is trivial. Let 1A > , since [ )0,CL ∈ ∞ We can obtain  

( )

( ) ( ) ( ) ( ){ }
( ) ( ){ }
( ) ( ) ( )

( 1) ( 1) 1 max
0 1 0 max 1

1 1
x Ax A x A

x A

x X x A x X x A

A L s x A L s x s x
s x

X A s x A L s x X A s x A L s x
∈

∈ ∈

∈

∈ ∈ ∈ ∈

⎡ ⎤− − −⎣ ⎦
≤ ≤ ⇒ ≤ + ≤
⎡ − ⎤ + − ⎡ − ⎤ + −⎣ ⎦ ⎣ ⎦

∑ ∑
∑ ∑ ∑ ∑

   (11) 

Therefore  ( ){ }
( ) ( ){ }
( ) ( ) ( )

( 1) 1 max
0 ( ) max 1

1C

x Ax A
L x A

x X x A

A L s x s x
g A s x

X A s x A L s x
∈

∈

∈

∈ ∈

⎡ ⎤− −⎣ ⎦
≤ = + ≤

⎡ − ⎤ + −⎣ ⎦

∑
∑ ∑

                   (12) 

That is ( ) [ )0 1, , 0,
CLg A A X L≤ ≤ ∀ ⊂ ∀ ∈ ∞  

(II) (To prove the monotonicity;) 

Let [ )0, ,L A B X∈ ∞ ⊂ ⊂  if 1A ≤ ,  it is trivial. 

If 1A > ,   let ( ){ } ( ){ }max max , 0 1
x B x A

s x s x a where a
∈ ∈

= + ≤ ≤ ,                         (13) 

we can obtain 

( )

( ) ( ) ( ) ( ){ } ( ) ( )
( 1)

( ) ( ) 1 1 max 0
1C C

x B
L L x A

x X x B

B L s x
g B g A a L s x f B f A

X B s x B L s x
∈

∈

∈ ∈

⎡ ⎤−
⎢ ⎥ ⎡ ⎤⎡ ⎤− = − + − − ≥⎣ ⎦⎢ ⎥ ⎣ ⎦⎡ − ⎤ + −⎣ ⎦⎢ ⎥⎣ ⎦

∑
∑ ∑

     (14) 

where 

( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( 1) ( 1) 0

1 0, 1 0

x X

x B x AB A

B A
x X x B x X x A

s x
f B f A B s x X A A s x X B

D D

D X B s x B L s x D X A s x A L s x

∈

∈ ∈

∈ ∈ ∈ ∈

⎡ ⎤⎡ ⎤− = − ⎡ − ⎤ − − ⎡ − ⎤ >⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
= ⎡ − ⎤ + − > = ⎡ − ⎤ + − >⎣ ⎦ ⎣ ⎦

∑
∑ ∑

∑ ∑ ∑ ∑
   (15) 

The proof is completed. 
Theorem 6 Basic properties of CL -measure 

. For the same given fuzzy density function 
(i)  CL -measure is an increasing continuous function on L. 

(ii)  if 0L =  then CL -measure is just the P-measure. 

(iii)  P- measure≤ L -measure≤ CL -measure≤B- measure  

(iv)  ( ) ( )lim
CL BL

A X g A g A
→∞

∀ ⊂ ⇒ =  

(v)  CL -measure is a completed multivalent fuzzy measure. 
Proof; 

(i)  let  ( ) ( )
CLf L g A=  and ( )0,L∈ ∞  

then ( )
( ) ( ) ( ){ }

( ) ( ) ( )
2

( 1) 1 max
0

1

x Ax X x A

x X x A

X A A s x s x s x
f L

X A s x A L s x

∈
∈ ∈

∈ ∈

⎡ ⎤⎡ − ⎤ − −⎣ ⎦ ⎣ ⎦
′ = ≥

⎡ ⎤⎡ − ⎤ + −⎢ ⎥⎣ ⎦⎣ ⎦

∑ ∑

∑ ∑
                      (20) 

Therefore CL -measure is an increasing function on L.  

(ii) (iv) and (v) are trivial. 
(iii) From Theorem 1 and Theorem 2, we know that 
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 P- measure≤ L -measure, CL -measure≤B- measure               (21) 
    Now, to prove that L -measure≤ CL -measure 

    Let A X∀ ⊂ , since ( ) ( )
x A x X

s x s x
∈ ∈

≤∑ ∑ , then 

( ) ( ){ }
( ) ( )

( ) ( ){ }
( ) ( ) ( )

( 1) 1 max ( 1) 1 max

11
x A x Ax A x A

x X x Ax X

A L s x s x A L s x s x

X A s x A L s xX A A L s x
∈ ∈∈ ∈

∈ ∈∈

⎡ ⎤ ⎡ ⎤− − − −⎣ ⎦ ⎣ ⎦
≤

⎡ ⎤ ⎡ − ⎤ + −− + − ⎣ ⎦⎣ ⎦

∑ ∑
∑ ∑∑

          (22) 

We can obtain ( ) ( ),
CL Lg A g A A X≤ ∀ ⊂ ,  

That is L -measure≤ CL -measure, the proof is completed. 

 

6 Conclusion  

In this paper, an improved multivalent fuzzy measure, completed L-measure, is proposed. Some 
important properties of this new fuzzy measure are also proposed. 

The Choquet integral regression model with the proposed new measure has been practically 
applied to an educational data. The experiment is not report here because of the lack of space. 

In the future, we will apply the Choquet integral regression model with the proposed new fuzzy 
measure to develop multiple classifier system. 

 

References 

[1] A. E. Hoerl, R. W. Kenard, and K. F. Baldwin, Ridge regression: Some simulation, 
Communications in Statistics, vol. 4, No. 2, pp. 105-123, 1975. 

[2] Hsiang-Chuan Liu, The Choquet integral regression model based on ν-measure, Journal of 
Educational Measurement and Statistics Vol.15, pp1-14, 2006, Taichung, Taiwan. (in Chinese) 

[3] H.-C. Liu, Y.-C. Tu, W.-C. Lin, and C. C. Chen, Choquet integral regression model based on 
L-Measure and γ-Support, Proceedings of 2008 International Conference on Wavelet Analysis and 
Pattern Recognition. pp.777-782, 2008. 

[4] H.-C. Liu, Type-2 L-measure and its Choquet integral regression model, 2009 Cross-Strait 
Conferences on Information Science and Information Technology, Ilan, Taiwan, 22-24 June, 
2009.(in Chinese) 

[5] M. Sugeno, Theory of fuzzy integrals and its applications, unpublished doctoral dissertation, Tokyo 
Institute of Technology, Tokyo, Japan, 1974. 

[6] L. A. Zadeh, Fuzzy Sets as a basis for a theory of possibility, Fuzzy Sets and Systems, vol. 1, pp. 
3-28, 1978. 

 

Author in brief: 
Hsiang-Chuan Liu Ph. D.，Professor, Department of Bioinformatics, Asia University, President of 

National Taichung University, Taiwan from 1993 to 2000. He has funded research and published 
articles in the areas of Biostatistics, Bioinformatics and Fuzzy Theory, E-mail: lhc@asia.edu.tw  
 
Acknowledgement: 

This paper is partially supported by the National Science Council grant (NSC 97-2410--H-468-014). 
. 



參加三次國際會議發表 EI 級論文 12 篇心得報告 

報告人姓名：劉湘川 
會議一、 
名稱：2008 International Conference on Wavelet Analysis and Pattern Recognition. 
期間及地點：August. 30-31, 2008, Hong Kong, . 
發表論文 5 篇題目如下： 

1. Hsiang-Chuan Liu, Yu-Chieh Tu, Wen-Chih Lin, and Chin-Chun Chen (2008). 
Choquet integral regression model based on L-Measure and γ-Support. Proceedings 
of 2008 International Conference on Wavelet Analysis and Pattern Recognition. 
Volume: 2, pp.777-782. ISBN: 978-1-4244-2238-8 
INSPEC Accession Number: 10299007. (EI paper) 

2. Hsiang-Chuan Liu, Yu-Du Jheng, Guey-Shya Chen and Bai-Cheng Jeng. (2008) 
  Choquet Integral Logistic Regression Algorithms Based on L-Measure and 
γ-Support. Proceedings of 2008 International Conference on Wavelet Analysis and 
Pattern Recognition. Volume: 2, pp.771-776. ISBN: 978-1-4244-2238-8. INSPEC 
Accession Number: 10299006. (EI paper) 

3. Hsiang-Chuan Liu, Jeng-Ming Yih, Der-Bang Wu, Shin-Wu Liu. (2008). Fuzzy  
   Possibility C-Mean Clustering Algorithms Based on completed Mahalonobis 

Distances. Proceedings of 2008 International Conference on Wavelet Analysis and 
Pattern Recognition. Volume: 1, pp.50-55. ISBN: 978-1-4244-2238-8 
INSPEC Accession Number: 10298940. (EI paper) 

4.. Hsiang-Chuan Liu, Ya-Ching Chiu, Chien-Hsiung Liao and Tung-Sheng Liu. 
(2008). An improved SVM algorithm based on Normalization and 
Liu-Transfomation. Proceedings of 2008 International Conference on Wavelet 
Analysis and Pattern Recognition. Volume: 2, pp. 470-473. 
ISBN:978-1-4244-2238-8.INSPEC Accession Number: 10288186. (EI paper)  

5. Hsiang-Chuan Liu, Shin-Wu Liu, Pei-Chun Chang, Wen-Chun Huang and 
Chien-Hsiung Liao. (2008). A novel classifier for influenza A viruses based on 
SVM and Logistic regression. Proceedings of 2008 International Conference on 
Wavelet Analysis and Pattern Recognition. Volume: 1, pp.287-291. 
ISBN: 978-1-4244-2238-8. INSPEC Accession Number: 10288176. (EI paper) 

 
會議二、 
名稱：Fifth International Conference on Fuzzy Systems and Knowledge Discovery 
      Fourth International Conference on Natural Computing 
期間及地點：October.18-20, 2008, Jinan, China. 
發表論文 4 篇題目如下： 



6.  Hsiang-Chuan Liu, Yu-Chieh Tu, Wen-Chun Huang and Chin-Chun Chen. 
(2008). “The Choquet Integral with Respect to R-Measure Based on γ-Support”.  
The 5th International Conference on Fuzzy Systems and Knowledge 
Discovery.18-20 October 2008, Jinan, China. Vol. 1, pp. 645-649. ISBN: 
978-0-7695-3305-6. INSPEC Accession Number: 10384941. (EI paper). 

7. Hsiang-Chuan Liu, Der-Bang Wu, Jeng-Ming Yih, and Shin-Wu Liu. (2008). 
“Fuzzy c-mean algorithm based on complete mahalanobis distances”. The 5th 
International Conference on Fuzzy Systems and Knowledge 
Discovery.18-20 October 2008, Jinan, China. Vol. 1, pp. 87-91. ISBN: 
978-0-7695-3305-6. INSPEC Accession Number: 10384941. (EI paper).  

8. Hsiang-Chuan Liu, Horng-Jinh Chang, Kuei-Jen Lee, Jiunn-I Shieh,Wen-Chun 
Huang and Shin-Ming Huang. (2008). “A Novel Classification Algorithm of 
Thermostable Proteins by Using Hurst Exponent and SVM Classifier” The 4th 
International Conference on Natural Computation,.18-20 October 2008, 
Jinan, China. Vol. 5, pp. 24-28. ISBN:978-0-7695-3305-6. (INSPEC 
Accession Number: 10398844). (EI paper) 

9.  Pei-Chun Chang, Kuei-Jen Lee, Jiunn-I Shieh, Chung-Hung Li, Jing-Doo Wang 
and Hsiang-Chuan Liu. (2008). “Physiochemical contraints in Influeng A 
Hemagglatinin”. Proceedings of the 2008 Fourth International Conference on 
Natural Computation, Vol. 5, pp. 85-89. ISBN:978-0-7695-3304-9. (EI paper). 

會議三、 
名稱：Eighth International Conference on Machine Learning and Sybernetics 
期間及地點：July. 12-15, 2009, Baoding, China. 
發表論文 3 篇題目如下： 
10.  Hsiang-Chuan Liu, Wei-Sung Chen, Yu-Chieh Tu, Yen-Kuei Yu, “Choquet 

Integral Regression Model Based on High-Order L-measure” Proceedings of the 
2009 International Conference on Machine Learning and Cybernetics (ICMLC 
2009). Volume: 6, page(s): 3177-3182, 2009. ISBN: 978-1-4244-3702-3. 
INSPEC Accession Number: 10845957..(EI paper) 

11. Horng-Jinh Chang, Hsiang-Chuan Liu, Shang-Wen Tseng and Fengming M. 

Chang, “A comparison on Choquet integral with respect to different 

information-based fuzzy measures”, Proceedings of the 2009 International 

Conference on Machine Learning and Cybernetics (ICMLC 2009). Volume: 

6, pp. 3161-3166. ISBN: 978-1-4244-3702-3. INSPEC Accession Number: 

10845958.  (EI paper) 
12. Jing-Doo Wang, Hsiang-Chuan Liu, Yao-Chug Shi, “A novel approach for 

evaluating class structure ambiguity”, Proceedings of the 2009 International  
Conference on Machine Learning and Cybernetics (ICMLC 2009). Volume 3 



page(s): 1550-1555, 2009. ISBN: 978-1-4244-3702-3. INSPEC Accession 
Number: 1084570. (EI paper) 

 

與會心得： 
1. 感謝國科會補助參加此三次國際會議，各主辦單均很用心在籌劃這 

次的會議，充分讓人感覺到他們的熱情。 
2. 此三次國際會議個人計發表12篇論文。均為EI級論文，其中模糊測度所發展

之相關理論模式均以教育測驗資料為應用實例‧ 且在後續研究中將有進一步

之發展 。     

3. 參加三次國際會議，與世界各國研究與技術開發專業人才進行交流，並從展

覽會中收集到一些與研究相關資料，獲益良多，亦看到了他國學者的在會議中

互動的方式和技巧，也了解到自己不足及可以改進的地方。 

4. 攜回資料名稱及內容： 

會議論文初稿全集 CD，會議議程冊，及未來相關國際會議的 Call for Paper

海報。 



Proceedings of  the 2008 International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, 30-31 Aug. 2008 

978-1-4244-2239-5/08/$25.00 ©2008 IEEE 
777 

 



Proceedings of  the 2008 International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, 30-31 Aug. 2008 

 778

 



Proceedings of  the 2008 International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, 30-31 Aug. 2008 

 779

 



Proceedings of  the 2008 International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, 30-31 Aug. 2008 

 780

 



Proceedings of  the 2008 International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, 30-31 Aug. 2008 

 781

 



Proceedings of  the 2008 International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, 30-31 Aug. 2008 

 782

 



Proceedings of  the 2008 International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, 30-31 Aug. 2008 

978-1-4244-2239-5/08/$25.00 ©2008 IEEE 
771 

CHOQUET INTEGRAL LOGISTIC REGRESSION ALGORITHM BASED ON 
L-MEASURE AND γ-SUPPORT 
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Abstract: 
Logistic regression algorithm and SVM algorithm are two 

well-known classification algorithms but when the 
multi-collinearity between independent variables occurs in 
above two algorithms, their classifying performance will 
always be not good. An improved classification algorithm 
combining the Choquet integral with respect to the λ-measure 
based on γ-support is proposed by our previous work. In this 
paper, we replaced the more sensitive fuzzy measure, 
L-measure with the λ-measure in above improved 
classification algorithm, and we obtained a further improved 
algorithm, called Choquet integral logistic regression 
algorithm based on L-measure and γ-support. For evaluating 
the performances of the SVM, logistic regression and the 
Choquet integral logistic regression algorithm with γ-support 
based on P-measure, λ-measure and L-measure, respectively, a 
real data experiment by using Leave-one-out Cross-Validation 
accuracy is conducted. Experimental result shows that our 
new algorithm has the best performance. 

Keywords: 
Fuzzy measure; Choquet integral; λ-measure; L-measure; 

γ-support 

1.  Introduction 

When interactions among independent variables exist 
in forecasting and classifying problems, the performances 
of the traditional methods, multiple linear regression 
algorithms and multiple logistic regression algorithms are 
always not good. For forecasting problems, recently, some 
Choquet integral regression algorithms based on different 
fuzzy measures proposed by our previous works can be 
used to improve this situation [1], [2], [3], [4], [5], [6]. 
Therefore, in our previous study, we consider that the 
proposed Choquet integral regression algorithms may also 
be used to improve the performance of classification, and 
an improved classification algorithm combining the 
Choquet integral with respect to the λ-measure based on 
γ-support is proposed.  

In this paper, we replaced the more sensitive fuzzy 
measure, L-measure with the λ-measure in above improved 
classification algorithm, and a further improved algorithm, 
called Choquet integral logistic regression algorithm based 
on L-measure and γ-support was obtained. For evaluating 
the performances of the logistic regression algorithm, a 
well-known classifying algorithm, Support Vector Machine 
(SVM), and our new algorithm, Choquet integral logistic 
regression algorithm with γ-support based on P-measure, 
λ-measure and L-measure, respectively, a real data 
experiment by using a Leave-one-out Cross-Validation 
accuracy is conducted.  

This paper is organized as followings: the logistic 
regression algorithm is introduced in section 2, the SVM 
algorithm is brief introduced in section 3, fuzzy measures 
including two well-known measures, P-measure, λ-measure 
and our new measure, L-measure, are described in section 4, 
fuzzy support and γ-support are described in section 5. 
Choquet integral and its regression algorithm are described 
in section 6. The new algorithm, Choquet integral logistic 
regression algorithm is introduced in section 7, Experiment 
and result are described in section 8, and final section is for 
conclusions and future works. 

2.  Logistic regression 

 For no needing to group the original data, our 
previous study derived the logistic regression algorithm as 
below by using a pared-down maximal likelihood 
estimating based on Bernoulli distribution not the binomial 
distribution. 

2.1.  Logistic regression model 

Let ( )1 2, ...., , , 1, 2,...,i i in ix x x y i N=  be a sample data, 
satisfying 

( ) { }1 2, ,..., , 0,1 ,n
i i i in ix x x x R y= ∈ ∈  
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( )~ 1, , 1, 2,...,i iY B p i N⊥⊥ =          (1) 
Logistic regression model is denoted as follows 

( ) ( )
11| , 1,2,...,

1 exp
i i iP P Y x i N

xα β
= = = =

⎡ ⎤′+ − +⎣ ⎦
 

(2) 
where ( )1 2, , ,..., nβ α β β β′ = are parameters vector of  
regression coefficients. 

 
 

2.2.  Logistic regression algorithm 

We can obtain the likelihood function and log 
likelihood function as following equations (3) and (4), 
respectively. 

( ) ( )1
1 2

1,2,...,

, ,..., 1 ii
yy

N i i
i N

L p p p p p −

=

= −∏       (3) 

( )1 2log , ,..., Nl L p p p= ⎡ ⎤⎣ ⎦  

( )( )
1

log 1 1 log
N

i i i i
i

y p y p
=

= + − −⎡ ⎤⎣ ⎦∑         (4) 

And we can get 

( ) ( )( )

( )( ) ( )( )
1

1

, log 1 1 log

log 1 1

N

i i i i
i

N

i i i
i

l l y p y p

exp x y x

α β

α β α β

=

=

= = + − −⎡ ⎤⎣ ⎦

⎡ ⎤⎡ ⎤′ ′= − + − + + − +⎢ ⎥⎣ ⎦⎣ ⎦

∑

∑
 

Using Newton-Raphson’s iterative algorithm, we can get 
the estimated regression coefficients of the multiple logistic 
regression model and the estimated multiple logistic 
regression equation as follows: 

( ) ( )
1ˆ ˆ 1 |

ˆˆ1 exp
i i iP P Y x

xα β
= = =

⎡ ⎤′+ − +⎣ ⎦

     (5) 

12 2 2

2
1

2 2 21 1

2
12 2 1 1

2 2 2

1 2
1

ˆ ˆ
ˆ ˆ

ˆ ˆ

ˆ ˆ

n

n

n nk k
nn n n k

l l l l

ll l l

ll l l

α α α β α βα α
β β

ββ β β α α ββ

β β
ββ α β β β

−

+

⎡ ⎤∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥∂ ∂ ∂ ∂∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ∂⎢ ⎥ ⎢ ⎥ ∂ ∂ ∂ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂= − ∂ ∂ ∂ ∂∂⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ∂⎢ ⎥∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ∂⎢⎣ ⎦∂ ∂ ∂ ∂ ∂⎣ ⎦

"

"

## # # % #

"
k

⎥
⎥
⎥

 

(6) 

Increment k; until 1 1

1

ˆ ˆ
ˆ ˆ

ˆ ˆ
n nk k

α α

β β
ε

β β
+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− <⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

# #
           (7) 

where 
( ) ( )

1

1 1
1 exp

N

i
i i

l y
xα α β=

⎡ ⎤∂ ⎢ ⎥= − −
⎢ ⎥∂ ⎡ ⎤′+ − +⎣ ⎦⎣ ⎦

∑       (8) 

( ) ( )
1

1 1 , 1,2,...,
1 exp

N

i ij
ij i

l y x j n
xβ α β=

⎡ ⎤∂ ⎢ ⎥= − − =
⎢ ⎥∂ ⎡ ⎤′+ − +⎣ ⎦⎣ ⎦

∑  

(9) 
( )
( )

2

2 2
1

exp

1 exp

N
i

i
i

xl

x

α β
α α β=

′+∂ = −
∂ ⎡ ⎤′+ +⎣ ⎦

∑        (10) 

( )
( )

22

2 2
1

exp
, 1, 2,...,

1 exp

N
ij i

ij i

x xl j n
x

α β
β α β=

′+∂ = − =
∂ ⎡ ⎤′+ +⎣ ⎦

∑   (11) 

( )
( )

2 2

2
1

exp
, 1,2,...,

1 exp

N
ij i

ij j i

x xl l j n
x

α β
α β β α α β=

′+∂ ∂= = − =
∂ ∂ ∂ ∂ ⎡ ⎤′+ +⎣ ⎦

∑  

(12) 
( )

( )
2 2

2
1

exp
, , 1, 2,...,

1 exp

N
ij ik i

ij k k j i

x x xl l j k n
x

α β
β β β β α β=

′+∂ ∂= = − =
∂ ∂ ∂ ∂ ⎡ ⎤′+ +⎣ ⎦

∑

(13) 

3.  Support vector machine (SVM) [7], [8] 

Given the training set of instance-labeled pairs 
( ), , 1, 2,...,i ix y i N= , where 

{ }, 1, 1 , 1, 2,...,n
i ix R y i N∈ ∈ − =         (14) 

The support vector machine (SVM) algorithm (Boser, 
Guyon, and Vapnik 1992, Cortes and Vapnik 1995) requires 

( )( )

( )

, ,
1

1min
2

subject to 1 ,

           0,

, , ,

:

N

iw b
i

i i i

i
m

i
n m

w w c

y w x b

where b c R w x R

R R

ξ
ξ

φ ξ

ξ

φ

φ

=

′ +

′ + ≥ −

≥

∈ ∈

→

∑

      (15) 

For any testing point { }, 1, 1n
i ix R y∈ ∈ − , we can make 

an assignment according to the following formula. 
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( ) ( )( ) sign 1

,    if 1
,    if 1

i i i

i

i

f x w x b

y
y

ϕ ξ′= + − −⎡ ⎤⎣ ⎦
+ = +⎧

= ⎨− = −⎩

     (16) 

4.  Fuzzy measures 

The well known fuzzy measures, P-measure proposed 
by Zadah in 1978, and the λ-measure proposed by Sugeno 
in 1974, and L-measure proposed by our previous work in 
2007 are concisely introduced as follows. 

4.1.   Fuzzy measures [9], [10], [11] 

A fuzzy measure µ  on a finite set X is a set function 

[ ]: 2 0,1X →µ  satisfying the following axioms: 

(i) ( ) ( )0 , 1X= =µ φ µ  (boundary conditions)      (17) 

(ii) ( ) ( )A B A B⊆ ⇒ ≤µ µ  (monotonicity)         (18) 

4.2.  Singleton measures [3], [4], [5], [6] 

A singleton measure of a fuzzy measure µ  on a 
finite set X is a function [ ]: 0,1s X →  satisfying: 

( ) { }( ) ,s x x x Xµ= ∈             (19) 

( )s x  is called the density of singleton x . 

4.3.  λ -measure [9], [11] 

For given singleton measures s, a λ -measure, gλ , is 
a fuzzy measure on a finite set X, satisfying: 
(i) , 2 , ,XA B A B A B X∈ = ≠∩ ∪φ  
   ( ) ( ) ( ) ( ) ( )g A B g A g B g A g B⇒ = + +∪λ λ λ λ λλ  (20) 

(ii) ( ) ( ) { }( )
1

1 1 0,
n

i i i
i

s x s x g x
=

+ = + > =⎡ ⎤⎣ ⎦∏ λλ λ      (21) 

Note that once the singleton measure is known, we can 
obtain the values of λ uniquely by using the previous 
polynomial equation. 

4.4.  P-measure [10] 

For given singleton measures s, a P-measure, Pg , is a 
fuzzy measure on a finite set X, satisfying: 

( ) ( ) { }( )2 max maxX
P Px A x A

A g A s x g x∀

∈ ∈
∈ ⇒ = =    (22) 

4.5.  L-measure [5] 

For given singleton measure s, a L-measure, Lg , is a 
fuzzy measure on a finite set X, X n= , satisfying: 

(i) [ )0,L ∈ ∞                                    (23) 

(ii) { }( )( ) 1L
x X x X

s x g x
∈ ∈

= =∑ ∑                      (24) 

(iii) , ( 1) 0A X n A A L∀ ⊂ − + − >  

( )
( )

( ) ( )
( 1)

( ) max 1 max
1

x A
L x A x A

A L s x
g A s x s x

n A A L
∈

∈ ∈

−
⎡ ⎤⇒ = ⎡ ⎤ + − ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦⎡ ⎤− + −⎣ ⎦

∑
 

(25) 
[Property] 
(i) L-measure has infinitely many solutions with closed 

form. 
(ii) When L=0, the L-measure is just a P-measure with 

closed form. 
(iii) Lg  is an increasing function of L. 

5.  Fuzzy supports [6] 

For given singleton measures s of a fuzzy measure µ on a 
finite set X, if ( ) 1

x X
s x

∈

=∑ , then s is called a fuzzy support 

measure of µ, or a fuzzy support of µ, or a support of µ. 

5.1.  γ- support [6] 

Let µ  be a fuzzy measure on a finite set, 

{ }1 2, ,..., nX x x x= , iy  be global evaluation or response of 

subject i  and ( )i jf x  be the evaluation of subject i  for 

singleton jx , satisfying 

( )0 1, 1, 2,..., , 1, 2,...,i jf x i N j n< < = =  

If ( ) ( )( )
( )( )

1

1
, 1,2,...,

1

j
j n

k
k

r f x
x j n

r f x
=

+
= =

⎡ ⎤+⎣ ⎦∑
γ          (26) 

where ( )( ) , j

j

y x
j

y x

S
r f x

S S
=                        (27) 

2
2

1 1

1 1n N

y i i
i i

S y y
N N= =

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑                (28) 
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( ) ( )
2

2

1 1

1 1
j

n N

x i j i j
i i

S f x f x
N N= =

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑        (29) 

( ) ( ),
1 1 1

1 1 1
j

n N N

y x i i i j i j
i i i

S y y f x f x
N N N= = =

⎛ ⎞ ⎡ ⎤
= − −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
∑ ∑ ∑

 
(30) 

satisfying ( )0 1jx≤ ≤γ  and ( )
1

1
n

j
j

x
=

=∑γ         (31) 

Then the function [ ]: 0,1X →γ  satisfying: 

{ }( ) ( )x x=µ γ , x X∀ ∈  is a fuzzy support of µ, called 
γ-support of µ. 

6.  Choquet integral regression models 

6.1.  Choquet integral [12] 

Let µ be a fuzzy measure on a finite set X. The 
Choquet integral of :if X R+→  with respect to µ for 
individual i  is denoted by 

( )( ) ( )( ) ( )( )1
1

, 1,2,...,
C

n
i

i i ij j j
j

f d f x f x A i Nµ µ−
=

⎡ ⎤= − =⎢ ⎥⎣ ⎦∑∫
(32) 

Where ( )( )0 0if x = , ( )( )i jf x  indicates that the indices 

have been permuted so that 

( )( ) ( )( ) ( )( )1 20 ...i i i nf x f x f x≤ ≤ ≤ ≤       (33) 

( ) ( ) ( ) ( ){ }1, ,...,j j j nA x x x+=         (34) 

6.2.  Choquet integral regression algorithms [1], 
[2], [3], [4], [5], [6] 

Let 1 2, ,..., Ny y y  be global evaluations of N objects 

and ( ) ( ) ( )1 2, ,..., , 1,2,...,j j N jf x f x f x j n= , be their 

evaluations of jx , where : , 1, 2,...,if X R i N+→ = . 
Let µ be a fuzzy measure, , R∈α β , 

( )2, ~ 0, , 1, 2,...,
Ci i i iy f dg e e N i Nµα β σ= + + =∫  

(35) 

( ) ( )2

, 1

ˆˆ , arg min
N

i C i
i

y f dg
=

⎡ ⎤= − −⎢ ⎥
⎣ ⎦
∑ ∫ µα β

α β α β   (36) 

then ˆˆˆ , 1,2,...,i iy f dg i N= + =∫ µα β  is called the 

Choquet integral regression equation of µ based on 

γ-support, where 
ˆ /yf ffS S=β                (37) 

1 1

1 1ˆˆ
N N

i i
i i

y f dg
N N= =

= −∑ ∑∫ µα β  

1 1 1

1 1

1

N N N

i i i k
i i k

hy

y y f dg f dg
N N

S
N

µ µ∗ ∗

= = =

⎡ ⎤ ⎡ ⎤
− −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦=
−

∑ ∑ ∑∫ ∫
 (38) 

2

1 1

1

1

N N

i k
i k

hh

f dg f dg
N

S
N

µ µ∗ ∗

= =

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦=
−

∑ ∑∫ ∫
 

7.  Choquet integral logistic regression algorithm 

Let 1 2, ,..., Ny y y  be global evaluations of N objects, 

( ) ( ) ( )1 2, ,..., , 1,2,...,j j N jf x f x f x j n= , be their 

evaluations of jx , where : , 1, 2,...,if X R i N+→ = , µ  
be a fuzzy measure based on γ- support. 

ˆˆ , 1,2,...,i iy f dg i Nµα β= + =∫� , be the Choquet 

integral regression equation of µ  based on γ- support. 
Furthermore, let ( ), , 1,2,...,i iy y i N=�  be a sample data, 
satisfying 

{ } ( ), 0,1 , ~ 1, , 1, 2,...,i i i iy R y Y B p i N⊥⊥∈ ∈ =�   (39) 
The Choquet integral logistic regression model is 

denoted as follows 

( ) ( )
11|

1 expi i i
i

P P Y y
yδ φ

= = =
+ − +⎡ ⎤⎣ ⎦

�
�

     (40) 

where ,δ φ  are parameters of two regression coefficients, 
and the Choquet integral logistic regression algorithm is 
given as below 

( ) ( )
1ˆ ˆ 1 |

ˆ ˆ1 exp
i i i

i

P P Y y
yδ φ

= = =
⎡ ⎤+ − +⎣ ⎦

�
�

    (41) 

12 2

2

2 2
1

2

ˆ ˆ

ˆ ˆ
k k

kk

l l l

ll l
δ δ δ φδ δ
φ φ

φφ δ φ

−

+

⎡ ⎤∂ ∂ ∂⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ∂ ∂∂ ∂⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ∂∂ ∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥∂⎣ ⎦∂ ∂ ∂⎣ ⎦

     (42) 

Increment k; until 
1

ˆ ˆ

ˆ ˆ
k k

δ δ
ε

φ φ+

⎡ ⎤ ⎡ ⎤
− <⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
             (43) 
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where 
( ) ( )

1

1 1
1 exp

N

i
i i

l y
yδ δ φ=

⎡ ⎤∂ = − −⎢ ⎥
∂ + − +⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

∑ �
      (44) 

( ) ( )
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1 1
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i i
i i

l y y
yφ δ φ=

⎡ ⎤∂ = − −⎢ ⎥
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�
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2
1
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N
i i

i i

y yl l
y

δ φ
δ φ φ δ δ φ=

+∂ ∂= = −
∂ ∂ ∂ ∂ + +⎡ ⎤⎣ ⎦

∑
� �

�
     (48) 

8.  Experiment and result 

A female breast cancer data set was downloaded from 
website,ftp://ftp.cs.wisc.edu/math-prog/cpo-dataset/machin
e-learn/cancer/WDBC/  

The sample included 569 females; there are two 
classes of tumors, 357 benign tumors and 212 malignant 
tumors, and 30 characteristics of tumors. 

The above real data is applied to evaluate the 
performances of the multiple logistic regression algorithm, 
The SVM algorithm, and three Choquet integral logistic 
regression algorithms with γ-support based on P-measure, 
λ-measure and L-measure, respectively, by using 
Leave-one-out Cross-Validation method to compute the 
accuracies of the response category variable.             

Since for any fuzzy measures, once a fuzzy support of 
the fuzzy measure is selected, all of the event measures of 
this fuzzy measure can be found, and then, the Choquet 
integral based on this fuzzy measure and the Choquet 
integral regression equation based on this fuzzy measure can 
also be found. 

For three fuzzy measures, P-measure, λ-measure and 
L-measure, suppose the same fuzzy support, γ-support, is 
first selected. We can obtain the γ-support of the 30 futures 
of the Breast Cancer Data by using the equations (25)~(30) 
as Table 1 

The performances of the Choquet integral logistic 
regression algorithms with γ-support based on P-measure 
λ-measure and L-measure, respectively, a multiple logistic 
regression algorithm and a SVM algorithm are compared 
by using Leave-one-out Cross-Validation accuracy. The 
experimental results of five classification regression 
algorithms are listed in Table 2. We can find that the 
Choquet integral logistic regression algorithm with 
γ-support based on L-measure outperforms other 

classification algorithms, and the multiple logistic 
regression algorithm is better than the SVM algorithm. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Table 2  Leave-one-out CV accuracy of six Classification 
algorithms 

Classification algorithm No. of 
mistrial Accuracy

Choquet integral logistic 
regression with P-measure  60 0.8946 

SVM 52 0.9086 

Logistic Regression 47 0.9174 

Choquet integral logistic 
regression with λ-measure 45 0.9209 

Choquet integral logistic 
regression with L -measure 36 0.9367 

 
 

9.  Conclusions and future works 

In classification problem, two well-known classification 
algorithms, multiple logistic regression algorithm and SVM 
algorithm are popular used. However, when the 
multicollinearity between independent variables occurs in 
above two algorithms, the performance of these two 
methods will always be not good. An enhanced 
classification algorithm combining the Choquet integral 
with respect to the λ-measure based on γ-support is 

Table 1   γ-support of the thirty futures 

No γ

-support No γ

-support No γ

-support
1 0.0181 11 0.0260 21 0.0154
2 0.0393 12 0.0624 22 0.0375
3 0.0171 13 0.0269 23 0.0146
4 0.0194 14 0.0320 24 0.0178
5 0.0396 15 0.0661 25 0.0367
6 0.0237 16 0.0411 26 0.0243
7 0.0180 17 0.0469 27 0.0179
8 0.0141 18 0.0345 28 0.0125
9 0.0421 19 0.0630 29 0.0386

10 0.0616 20 0.0526 30 0.0402
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proposed by our previous work. In this research, we took 
the place of the more sensitive fuzzy measure, L-measure 
with the λ-measure in the above enhanced classification 
algorithm, and a further enhanced algorithm, called 
Choquet integral logistic regression algorithm based on 
L-measure and γ-support was obtained. A real data 
experiment by using Leave-one-out Cross-Validation 
accuracy is conducted for evaluating the performances of 
the SVM, logistic regression and the Choquet integral 
logistic regression algorithm with γ-support based on 
P-measure, λ-measure and L-measure, respectively.  And 
experimental result shows that our new algorithm, Choquet 
integral logistic regression algorithm based on L-measure 
and γ-support, has the best performance. The performance 
of multiple logistic regression algorithm is better than that 
of SVM algorithm. 

In the future we will apply the proposed Choquet 
integral regression model with the better measure based on 
the best fuzzy support, γ-support, to develop multiple 
classifier system. 
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Abstract: 
Two well known fuzzy partition clustering algorithms, 

FCM and FPCM are based on Euclidean distance function, 
which can only be used to detect spherical structural clusters. 
GK clustering algorithm and GG clustering algorithm, were 
developed to detect non-spherical structural clusters, but both 
of them fail to consider the relationships between cluster 
centers in the objective function, needing additional prior 
information.. In our previous studies, we developed two 
improved algorithms, FCM-M and FPCM-M, based on 
unsupervised Mahalanobis distance without any additional 
prior information. And FPCM-M is better than FCM-M, since 
the former has the more information about the typicalities 
than the later. In this paper, an improved new unsupervised 
algorithm, “fuzzy possibility c-mean based on complete 
Mahalanobis distance without any prior information 
(FPCM-CM)”, is proposed. In our new algorithm, not only the 
local covariance matrix of each cluster but also the overall 
covariance matrix was considered. It can get more information 
and higher accuracy by considering the additional overall 
covariance matrix than FPCM-M. A real data set was applied 
to prove that the performance of the FPCM-CM algorithm is 
better than those of the traditional FCM and FPCM algorithm 
and our previous FCM-M.  

Keywords: 
FCM; CM; FCM-M; PCM-M; FPCM-CM 

1.  Introduction 

The clustering analysis plays an important role in data 
analysis and interpretation. It groups the data into classes or 
clusters so that the data objects within a cluster have high 
similarity in comparison to one another, but are very 
dissimilar to those data objects in other clusters. 

Fuzzy partition clustering is a branch in cluster analysis, 
it is widely used in pattern recognition field. The well 
known fuzzy Possibility partition clustering algorithms, 
PCM [4], and FPCM [6] are proposed to improve the 

problems of outlier and noise in FCM [1], but the above 
three algorithms were based on Euclidean distance function, 
which can only be used to detect spherical structural 
clusters. 

Extending Euclidean distance to Mahalanobis distance,  
Gustafson-Kessel (GK) clustering algorithm [2] and 
Gath-Geva (GG) clustering algorithm [3], are developed to 
detect non-spherical structural clusters, but both of them  
fail to consider the relationships between cluster centers in 
the objective function, needing additional prior information. 
In our previous studies, we developed two improved 
algorithms, FCM-M and FPCM-M , based on unsupervised 
Mahalanobis distance without any additional prior 
information, and FPCM-M is better than FCM-M, since the 
former has the more information about the typicalities than 
the later. 

In this paper, an improved new unsupervised algorithm, 
“fuzzy possibility c-mean based on complete Mahalanobis 
distance without any prior information (FPCM-CM)”, is 
proposed. In our new algorithm, not only the local 
covariance matrix of each cluster but also the overall 
covariance matrix were considered. It can get more 
information and higher accuracy by considering the 
additional overall covariance matrix than FPCM-M. 

 A real data set was applied to prove that the 
performance of the FPCM-CM algorithm is better than 
those of the traditional FCM and FPCM algorithm and our 
previous FCM-M. 

This paper is organized as followings: Fuzzy c-mean 
algorithm is introduced in section 2, Fuzzy possibility 
c-mean algorithm is introduced in section 3, FCM-M 
algorithm is introduced in section 4. FPCM-M algorithm  
is described in section 5. FPCM-CM algorithm is described 
in section 6, Experiment and result are described in section 
7 and final section is for conclusions and future works. 
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2.  Fuzzy c-Mean Algorithm [1, 5] 
 

The objective function used in FCM is given by 
Equation (1) 

( ) 22

1 1 1 1

, ,
c n c n

m m m
F C M ij i j i j j i

i j i j
J U A X d x aµ µ

= = = =

= = −∑ ∑ ∑ ∑
   (1) 

[ ]0,1ijµ ∈  is the membership degree of  data object 

jx in cluster iC , and it satisfies the following constraint 
given by Equation (2-2)  

1
1, 1,2,...,

c

ij
i

j nµ
=

= ∀ =∑                (2) 

C is the number of clusters, m is the fuzzifier, 
m>1,which controls the fuzziness of the method. They are 
both parameters and need to be specified before running the 
algorithm. 22

ij j id x a= − is the square Euclidean distance 
between data object jx to center ia . 

Minimizing objective function (1) with constraint (2) , 
the updating function for ia  and ijµ  is obtained as (3) and 
(4), 

     
1

1

1, 2, ...,

n
m

ij j
j

i n
m

ij
j

x
a i c

µ

µ

=

=

= =
∑

∑
      (3) 

( ) ( )
( ) ( )

11
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1

m
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j i j i
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l
j l j l
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x a x a
µ
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−

=

⎡ ⎤
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∑       (4) 

3.  Fuzzy Possibility C-Mean Algorithm [6] 

 The improved fuzzy partition clustering algorithms 
“Fuzzy Possibility C-Mean (FPCM)” is given by Equation 
(5) 

 

( ) ( ) 2

1 1

, , ,
c n

m m
FPCM ij ij j i

i j
J U T A X t x aδµ

= =

= + −∑∑   

      (5) 
constraints：membership     

1
1 , 1, 2, ...,

c

ij
i

j nµ ∀

=

= =∑ ,         (6) 

  typicality 
1

1 , 1, 2, ...,
n

ij
j

t i c∀

=

= =∑       (7) 

Minimizing objective function (5) with constraint (6) 
and (7) , the updating function for ia  , ijµ  and ijt  is 
obtained as (8) , (9) and (10) 

( )

( )
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∑          (10) 

1, 2, ..., . 1, 2,...,i c j n= =  
 

4. FCM-M Algorithm [7] 
 
  For improving the above problems of GK algorithm, 
based on unsupervised Mahalanobis distance without any 
additional prior information, we added the class covariance 
matrix and a regulating factor of covariance matrix, 

1ln i
−− Σ+ , to each class in objective function (1). The 

improved new algorithm, “Fuzzy C-Mean based on 
Mahalanobis distance (FCM-M)”, is obtained, and the 
objective function of FCM-M is given as (11) and 
constraints (12); 
 

( ) ( ) ( )1 1

1 1
, , , ln

c n
m m
FCM M ij j i i j i i

i j
J U A X x a x aµ − −

−
= =

⎡ ⎤′Σ = − Σ − − Σ⎢ ⎥⎣ ⎦
∑∑    (11) 

Constrain    
1

1 , 1,2,...,
c

ij
i

j nµ
=

= ∀ =∑               (12) 

Minimizing objective function (11) with constraint 
(12) , the updating function for ia  , ijµ  and iΣ  is obtained 
as (13), (14) and (15) 
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5.  FPCM-M Algorithm [8] 

 For improving the FPCM algorithm, we added the class 
covariance matrix and a regulating factor of covariance 
matrix, 1ln i

−− Σ+ , to each class in objective function (5). 
The improved new algorithm, “Fuzzy Possibility C-Mean 
based on Mahalanobis distance (FPCM-M)”, is obtained, 
and the objective function of FCM-M is given as (16) and 
constraints (17); 
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= =∑                (18) 

Minimizing objective function (16) with constraint 
(17) , (18) the updating function for ia  , ijµ  , ijt and iΣ  
is obtained as (19), (20), (21)  and (22) 
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6.  FPCM-CM Algorithm 

In this paper, for improving the  FPCM-M algorithm, , 
we added a overall  scatter matrix, ( ) ( )1

i t t i ta a a a−′− − Σ − , in 
objective function (16). The improved new algorithm, 
“Fuzzy Possibility C-Mean based on Complete 
Mahalanobis distance (FPCM-CM)”, is obtained, and the 
objective function of FCM-M is given as (23) and 
constraints (24); 
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Using the Lagrange multiplier method, to minimize 

the objective function (23) with constraints (24) respect to 
parameters 

ia  , ijµ , ijt , iΣ  , we can obtain the updating 
function as (26), (27), (28),and(29), 
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The new fuzzy clustering algorithm (FPCM-CM) can 
be summarized in the following steps: 

Step 1: Determining the number of cluster; c, let 
m=2, 3δ = , Given converging error 0ε > (such 
as 0.001ε = ) choose the result membership matrix of 
FPCM-CM algorithm as the initial one and the normalized 
result typicality matrix of FPCM-CM algorithm as the 
initial one respectively; 

let ( )0 , 1,2,...,ia i c=  be the result centers of k-mean 

algorithm, and ( )0
ij j id x a= −   be distances between 

data object jx to center ( )0
ia . 
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Step 2:  Find  
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Step 3:  Increment k; until ( ) ( )1

1
max k k

i ii c
a a ε−

≤ ≤
− <  

 

7. Experiment and Results 

A real data set of 968 students from elementary 
schools was selected. These data included the 10 
mathematics questions.  

At first, the main factors of 968 data were calculated 
by using factor analysis. Next, according to the main factors, 
the samples were assigned to 4 clusters based on the 
clustering analysis using the k-mean clustering of SPSS for 
Windows 10.0. The results were shown in Table 1. 

Table 1  The characteristics of 4 clusters 

Cluster samples 
size Grade 

average distance of the 
points from center of 

cluster 
1 220 2 2.082132 
2 435 4 1.433158 
3 275 3 2.032674 
4 56 1 2.356698 

 
From Cluster 1, 15 samples randomly were selected, 

15 from cluster 2, 15 from cluster 3, and 5 from cluster 4. 
The combination the method of choosing the initial 

membership with distinct computing distance was shown in 
Table 2.  

 
Table 2  Sample size of each group 
Group Number of Samples 

1 15 
2 15 
3 15 
4 5 

 
 
The classification accuracies of testing samples were 

shown in Table 3. 
From the data of Table 3, we found that the 

FPCM-CM algorithm could obtain the best results, and our 
previous algorithms, FPCM-M and FPCM-M are better 
than two well known algorithms, FPCM and FCM. 
 

Table 3 Classification accuracies of testing samples. 
Algorithms Accuracies (%) 

FCM 32 
FPCM  30 
FCM-M  56 

FPCM-M 58 
FPCM-CM 62 

 

8. Conclusions 

Two well known fuzzy partition clustering algorithms, 
FCM and FPCM are based on Euclidean distance function, 
which can only be used to detect spherical structural 
clusters. GK clustering algorithm and GG clustering 
algorithm, were developed to detect non-spherical structural 
clusters, but fail to consider the relationships between 
cluster centers in the objective function, needing additional 
prior information.. In our previous studies, we developed 
two improved algorithms, FCM-M and FPCM-M , based on 
unsupervised Mahalanobis distance without any additional 
prior information. And FPCM-M is better than FCM-M, 
since the former has the more information about the 
typicalities than the later. In this paper, an improved new 
unsupervised algorithm, “fuzzy possibility c-mean based on 
complete Mahalanobis distance without any prior 
information (FPCM-CM)”, is proposed. In our new 
algorithm, not only the local covariance matrix of each 
clusters but also the overall covariance matrix were 
considered. It can get more information and higher 
accuracy by considering the additional overall covariance 
matrix than FPCM-M. A real data set was applied to prove 
that the performance of the FPCM-CM algorithm is better 
than those of the traditional FCM and FPCM algorithm and 
our previous FCM-M, and our previous algorithms, 
FPCM-M and FPCM-M are better than two well known 
algorithms, FPCM and FCM. 

In future, we will consider improve the initial value 
problem by using the swarm algorithm. 
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Abstract: 
The support vector machine (SVM) classifier is a popular 

and appealing classifier .It could be improved by taking some 
transformation about the original data before classification 
even sometimes its performance is not good,. In our previous 
paper, two transformations, NWFE-Transformation and 
Liu-Transformation are considered. The results showed that 
the SVM with our Liu-Transformation algorithm has the best 
performance. 

In this paper, we considered the further improved SVM 
algorithm based on not only the Liu- transformation but also 
the well known normalization, For evaluating the 
performances of the SVM without any transformation and 
normalization, the SVM with NWFE-Transformation and 
Liu-Transformation, respectively, the SVM with one of above 
two transformations and the well known normalization, a real 
data experiment by using 5-fold and Leave-one-out 
Cross-Validation accuracy is conducted. Experimental result 
shows that the SVM with the proposed Liu-Transformation 
algorithm and the well known normalization algorithm has 
the best performance. 

Keywords: 
SVM; NWFE-Transformation; Liu-Transformation 

1.  Introduction 

The support vector machine (SVM) classifier is a 
popular and appealing classifier [1], [2], [3], [4]. Due to 
sometimes its performance is not good, it can be improved 
by taking some transformation about the original data 
before classification,  two transformations can be  
considered, one is NWFE-Transformation proposed by  B. 
C. Kuo & D. A. Landgrebe in 2001 [5], [6], the other is 
Liu-Transformation proposed by our previous work in 2008 
[7], [8]. The results of our previous paper [8] showed that 
the SVM with our Liu-Transformation algorithm has the 
best performance. In this paper, we considered the further 
improved SVM algorithm based on not only the Liu- 
transformation but also the well known normalization, For 

evaluating the performances of the SVM without any 
transformation and normalization, the SVM with 
NWFE-Transformation and Liu-Transformation, 
respectively, the SVM with one of above two 
transformations and the well known normalization, a real 
data experiment by using 5-fold and Leave-one-out 
Cross-Validation accuracy is conducted. Experimental 
result shows that the SVM with the proposed 
Liu-Transformation algorithm and the well known 
normalization algorithm has the best performance. 

For evaluating the performances of the SVM without 
any transformation and normalization, the SVM with 
NWFE-Transformation and Liu-Transformation, 
respectively, the SVM with one of above two 
transformations and the well known normalization, a real 
data experiment by using 5-fold and Leave-one-out 
Cross-Validation accuracy is conducted. Experimental 
result shows that the SVM with the proposed 
Liu-Transformation algorithm and the well known 
normalization algorithm has the best performance 

This paper is organized as followings: support vector 
machine classifier is introduced in section 2, 
NWFE-Transformation is introduced in section 3, 
Liu-Transformation is introduced in section 4. 
Normalization algorithm is described in section 5. 
Experiment and result are described in section 6 and final 
section is for conclusions and future works. 

2.  Support vector machine (SVM) [1], [2], [3], [4] 

Given the training set of instance-labeled pairs 
( ), , 1, 2,...,i ix y i N= , where 

             { }, 1, 1 , 1, 2,...,n
i ix R y i N∈ ∈ − =       (1) 

The support vector machine (SVM) algorithm (Boser, 
Guyon, and Vapnik 1992, Cortes and Vapnik 1995) requires 
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For any testing point { }, 1, 1n
i ix R y∈ ∈ − , we can 

make an assignment according to the following formula: 
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f x
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3.  NWFE-Transformation [5], [6] 

The main ideas of nonparametric weighted feature 
extraction transformation (NWFE-Transformation)(Kuo, B. 
C. and  Landgrebe, 2002, 2004) are putting different 
weights on every sample to compute the “local means” and 
defining  new nonparametric weighted between-class and 
within-class scatter matrices to get more features. 

The nonparametric weighted between-class scatter 
matrix, NW

bS  and the nonparametric weighted within-class 
scatter matrix, NW

wS , of NWFE-Transformation are defined 
as 

    

( )
( ) ( )

( ) ( ) ( )( )( )

,

, ,
1 1 1

,

i i jnc c Ti iN W k
b i k j k j

i i j k i

i i i
k j k j k

S p B B
n

B x M x

λ
= ≠ = =

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

⎡ ⎤ = −⎣ ⎦

∑ ∑ ∑
    (4) 

       

( )
( ) ( )

( ) ( ) ( )( )( )

,

,
1 1

,

i i inc Ti iN W k
w i k i k

i k i

i i i
k i k i k

S p B B
n

B x M x

λ
= =

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

⎡ ⎤ = −⎣ ⎦

∑ ∑
      (5) 
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C is the number of classes, ip  is the prior probability 

of class i , in  is the training sample size of class i ; ( )i
kx  

is the  sample vector k with dimension d in class i ; 
( )( )i

j kM x  is the nonparametric weighted local mean of 
( )i
kx  in class j ; ( ),d x y  is the Euclidean distance from 

x to y. 
The goal of NWFE-transformation is to find a linear 

transformation ,d pA R p d×∈ ≤ , which maximizes the  
between-class scatter and minimizes the within-class scatter. 
The columns of A are the optimal features by optimizing 
the following criterion 

       ( ) 1
arg max T NW T NW

w bA
A tr A S A A S A

−⎡ ⎤= ⎢ ⎥⎣ ⎦
       (9) 

This maximizing is equivalent to find the eigen-pairs 
( ) 1 2, , 1, 2,..., , ...i i dv i dλ λ λ λ= ≥ ≥ ≥  for the generalized 
eigenvalue problem 
                 NW NW

b wS v S vλ=               (10) 

4.  Liu-Transformation [7] 

The main ideas of Liu-transformation proposed by our 
previous work (Hsiang-Chuan Liu, 2008) [7] are putting 
different weights on every sample to compute the 
“weighted means” by referring the distances of the points 
from the ‘outmost points’ and defining  new 
nonparametric weighted between-class and within-class 
scatter matrices to get more features. 

Let p nX ×  be the data set with n sample points and c 

classes, in  be size of class i , satisfying
1

c

i
i

n n
=

=∑ ; ip  

be proportion of class i , satisfying i
i

n
p

n
= ; ( )i d

kx R∈  

be sample k in class i ; ( )

1

1 in
i

i k
i k

m x
n =

= ∑  be the original 

mean of  class i ; ( )jx∗  be the outmost point of class j , 
satisfying 

        ( )( )( ) 2

1,2,...,
1

arg max ,
j

c
jj

ikk n
i

x d x m∗
=

=

= ∑        (11) 

jm∗  be weighted mean of class j  by referring the 
distances of the sample points from the outmost point of 
class j  satisfying 
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(13) 
The nonparametric weighted between-class scatter 

matrix, L
bS  and the nonparametric weighted within-class 

scatter matrix, L
wS , of  Liu-Transformation are defined as 
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The goal of Liu-transformation is to find a linear 
transformation ,d pA R p d×∈ ≤ , which maximizes the  
between-class scatter and minimizes the within-class scatter. 
The columns of A are the optimal features by optimizing 
the following criterion 

         ( ) 1
arg max T L T L

w bA
A tr A S A A S A

−⎡ ⎤= ⎢ ⎥⎣ ⎦
      (18) 

This maximizing is equivalent to find the eigen-pairs 
( ) 1 2, , 1, 2,..., , ...i i dv i dλ λ λ λ= ≥ ≥ ≥  for the generalized 
eigenvalue problem 
                 L L

b wS v S vλ=                 (19) 

5.  Normalization algorithm 

Given the training set of instance-labeled pairs 
( ), , 1, 2,...,i ix y i N= . Let ( ),1 ,2 ,3 ,, , ,..., n

i i i i i nx x x x x R= ∈ , 

then the normalization of ix  is 

( ),1 ,2 ,3 ,, , ,..., n
i i i i i nz z z z z R= ∈  satisfying 

       , , 1, 2,..., , 1, 2,...,ij j
i j
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= = −∑ ∑            (21) 

6.  Experiment and result 

A wine data set was downloaded from website, 
ftp://ftp.ics.uci.edu/pub/machine-learning-databases. The 
sample included 178 instances, 3 classes of wine, and 13 
features for each instance. 

The above real data is applied to evaluate the 
performances of the Support Vector Machine (SVM) 
algorithm without any transformation, the SVM algorithm 
with NWFE-Transformation, the SVM algorithm with 
Liu-Transformation, the SVM algorithm with normalization, 
the SVM algorithm with normalization and 
NWFE-Transformation, and the SVM algorithm with 
normalization and Liu-Transformation by using 5-fold and 
Leave-one-out Cross-Validation method to compute the 
accuracies of the response category variable. 

Table 1   Accuracy of six Classification algorithms 
Classification 

algorithm 
5-fold CV 
accuracy 

Leave-one-out 
CV accuracy 

SVM 45.763 46.633 

SVM_NWFE 93.023 96.305 

SVM_N 97.740 98.740 

SVM_ Liu 99.080 98.773 

SVM_N_NWFE 100 100 

SVM_N_Liu 100 100 

 
The experimental results of six classification 

algorithms are listed in Table 1. For both 5-fold CV and 
Leave-one-out CV accuracy, we can find the same 
situations as following: 
(i) The SVM algorithm with normalization and 

Liu-Transformation and the SVM algorithm with 
normalization and NWFE-Transformation had the same 
performance, better than others. 

(ii) The SVM algorithm with just one of transformation or 
normalization is better than the SVM algorithm without 
any transformation and normalization. 
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(iii) The performance of the SVM algorithm without any 
transformation and normalization is not always good. 

7.  Conclusions and future works 

The support vector machine (SVM) classifier is a 
popular and appealing classifier. Because sometimes its 
performance is not good, it could be improved by taking 
some transformation about the original data before 
classification. Two transformations can be considered, one 
is NWFE-Transformation proposed by B. C. Kuo & D. A. 
Landgrebe in 2001 [5], [6], the other is Liu-Transformation 
proposed by our previous work in 2008 [7], [8]. The results 
of our previous paper [8] showed that the SVM with our 
Liu-Transformation algorithm has the best performance. In 
this paper, we considered the further improved SVM 
algorithm based on not only the Liu- transformation but 
also the well known normalization. 

 For evaluating the performances of the SVM without 
any transformation and normalization, the SVM with 
NWFE-Transformation and Liu-Transformation, 
respectively, the SVM with one of above two 
transformations and the well known normalization, a real 
thyroid data included 178 instances, 3 classes of wine, and 
13 features for each instance is conducted. 

The above real data is applied to evaluate the 
performances of the Support Vector Machine (SVM) 
algorithm without any transformation, the SVM algorithm 
with NWFE-Transformation, the SVM algorithm with 
Liu-Transformation, the SVM algorithm with normalization, 
the SVM algorithm with normalization and 
NWFE-Transformation, and the SVM algorithm with 
normalization and Liu-Transformation by using 5-fold and 
Leave-one-out Cross-Validation method to compute the 
accuracies of the response category variable. 

The experimental results of six classification 
algorithms are listed in Table 1. Both 5-fold CV and 
Leave-one-out CV accuracy, we can find the same 
situations as following; 
(i) The SVM algorithm with Liu-Transformation is better 

than the SVM algorithm with NWFE-Transformation 
had and the SVM algorithm without any transformation. 

(ii) The SVM algorithm with normalization and 
Liu-transformation and the SVM algorithm with 

normalization and NWFE-Transformation are same 
better than others. 
In future, we will apply our Liu-Transformation with 

normalization to improve the performances of other 
classifiers. 
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Abstract: 
In search of good classifier of hosts of influenza A viruses 

is an important issue to prevent pandemic flu. The 
hemagglutinin protein in the virus genome is the major 
molecule that determining the range of hosts. In this paper,   
a novel classification algorithm of hemagglutinin proteins 
integrating SVM and logistic regression based on 4 kinds of 
Hurst exponents for each protein sequence is proposed. This 
method not used before is the first one integrating the 
physicochemical properties, fractal property, SVM and 
logistic regression classifier. For evaluating the performance 
of this new algorithm, a real data experiment by using 5-fold 
Cross-Validation accuracy is conducted. Experimental result 
shows that this new classification algorithm is useful and 
batter than SVM and logistic regression, respectively. 

Keywords: 
Influenza A viruses; Hurst exponent; SVM; Logistic 

regression; SVM-Logistic regression 

1.  Introduction 

Influenza A viruses are negative-strand RNA viruses 
that infect a wide variety of animals in the nature. The 
infection of human may cause significant mortality and 
morbidity worldwide [1]. The hemagglutinin (HA) protein 
in the virus genome is the major molecule that determining 
the range of hosts. The natural reservoir of influenza virus 
such as avian flu may emerges in strains infectious to 
human by mutation of HA protein and brings pandemic flu, 
therefore, in search of good classification algorithm of HA 
proteins is an important issue to prevent pandemic flu.  In 
this paper,   a novel classification algorithm of HA 
proteins combining Hurst exponents, SVM and logistic 
regression is proposed [2], [3], [4], [5]. This method not 
used before is the first one integrating the physicochemical 
properties, fractal property, support vector machine (SVM) 
and logistic regression classifier. 

The protein residues were coded according to its 

physicochemical quantities of acidity, Van der waal volume, 
surface area and hydrophobicity in the situation of single 
amino acid [6], [7]  

First step, the HA sequence data of serotype H5 of 
influenza A viruses with two classes used in this research 
were downloaded from public databases: Influenza 
Sequence Database (http://www.flu.lanl.gov). The sample 
included 90 HA protein sequences of human infections and 
90 HA protein sequences of bird infections.  

Second step, to replace each residue of amino acid in 
the sequences of the HA proteins with 4 physicochemical 
quantities. 

Third step, computing the Hurst exponents of each 
non-symbolic sequences of the HA proteins, we can 
obtained four features of Hurst exponents in each sequences 
of the HA protein [2], [6], [7]. 

Last step, two well known and appealing classifiers, 
Support Vector Machine (SVM) and Logistic regression 
(LR), and our new hybrid classifier combining SVM and 
LR were used to discriminate the correct class of the 180 
HA proteins with four features of Hurst exponents. 

For evaluating the performance of above three 
classifiers, the above HA proteins data experiment by using 
5-fold Cross-Validation accuracy is conducted. 

This paper is organized as followings: four 
physicochemical quantities of 20 amino acids are 
introduced in section 2, Hurst exponent is introduced in 
section 3, support vector machine classifier is introduced in 
section 4, logistic regression is introduced in section 5, the 
new hybrid classifier combining SVM and logistic 
regression is introduced in section 6, experiment and result 
are described in section 7 and final section is for 
conclusions and future works. 

2.  Four physicochemical properties of amino acids 

 There are four physicochemical quantities of acidity, 
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Van der waal volume, surface area and hydrophobicity in 
the situation of single amino acid showed as Table 1 [2], 
[3]  

 
Table 1. 20 amino acids and its 4 physicochemical 
quantities 

 
Amino 
 acid 

Acidity 
Van der  
waal 
Volume 

Surface  
area 

HydroPh- 
obicity 

A 7.0 67 115 0.616 
C 3.4 86 135 0.680 
D 3.9 67 150 0.028 
E 4.1 109 190 0.043 
F 7.0 135 210 1.000 
G 7.0 48 75 0.501 
H 6.0 118 195 0.165 
I 7.0 124 175 0.943 
K 10.5 135 200 0.283 
L 7.0 124 170 0.943 
M 7.0 124 185 0.738 
N 7.0 148 160 0.236 
P 7.0 90 145 0.711 
Q 7.0 114 180 0.251 
R 12.5 167 225 0.000 
S 7.0 73 115 0.359 
T 7.0 93 140 0.450 
V 7.0 105 155 0.825 
W 7.0 163 255 0.878 
Y 10.5 141 230 0.880 

3.  Hurst exponent 

The Hurst exponent occurs in several areas of applied 
mathematics, including fractals and chaos theory, long term 
memory processes and spectral analysis [8]. Hurst exponent 
estimation has been applied in areas ranging from 
biophysics to computer networking. Estimation of the Hurst 
exponent was originally developed in hydrology. However, 
the modern techniques for estimating the Hurst exponent 
comes from fractal mathematics.  

Estimating the Hurst exponent for a data set provides a 
measure of whether the data is a pure random walk or has 
underlying trends.  

The Hurst exponent (H) is a statistical measure used to 
classify time series. H=0.5 indicates a random series while 
H>0.5 indicates a trend reinforcing series. The larger the H 
value is, the stronger the trend. Experiments with 
backpropagation Neural Networks show that series with 
large Hurst exponent can be predicted more accurately than 
those with H value close to 0.50. Thus the Hurst exponent 

provides a measure for predictability.  
Three methods were used most often for the estimation 

of the Hurst exponent: the R/S method, the 
roughness–length (R–L) method and a variogram. The R/S 
method (Hurst et al., 1965) [9] is commonly perceived as 
the most suitable for the time series analysis, because it 
presents the relationship between irregular (singular) 
rescaled ranges, signal value and their local statistical 
properties relative to the scale factor. 

 In this study R/S method is used.  R/S method [10] 
is based on empirical observations by Hurst and estimates 
H are based on the R/S statistic. It indicates (asymptotically) 
second-order self-similarity. H is roughly estimated through 
the slope of the linear line in a log-log plot, depicting the 
R/S statistics over the number of points of the aggregated 
series. That is, given a time sequence of observations, tw  
define the   Series 

( ) ( )
1

, , 1
t

u
u

W t w w tττ τ
=

= − ≤ ≤∑         (5) 

where 

1

1
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t
w w

τ

τ τ =

= ∑                 (6) 

Define 

11
( ) max ( , ) min ( , )

tt
R W t W t

τ τ
τ τ τ

==
= −         (7) 

and 

( )2

1

1( ) t
t

S w w
τ

ττ
τ =

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑            (8) 

 In plotting ( )log
( )

R
S

τ
τ

 against logτ , we expect to get 

a line whose slope determines the Hurst exponent. 

4.  Support vector machine (SVM) [11~14] 

Given the training set of instance-labeled pairs 
( ), , 1, 2,...,i ix y i N= , where 

{ }, 1, 1 , 1, 2,...,n
i ix R y i N∈ ∈ − =         (9) 

The support vector machine (SVM) algorithm (Boser, 
Guyon, and Vapnik 1992 [11], Cortes and Vapnik 1995 [12]) 
requires 
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For any testing point { }, 1, 1n
i ix R y∈ ∈ − , we can make 

an assignment according to the following formula. 
( ) ( )( ) 1

1,    if ( ) 0
1,    if ( ) 0

i i i

i
i

i

d x w x b

d x
y

d x

ϕ ξ′= + − −⎡ ⎤⎣ ⎦
+ ≥⎧

= ⎨− <⎩

        (11)         

5. Multiple Logistic regression classifier 

5.1.  Multiple logistic regression model [4], [5] 

Let ( )1 2, ...., , 1, 2,...,i i in ix x x y i N=   be a sample data, 

satisfying ( ) { }1 2, ,..., , 0,1 ,n
i i i in ix x x x R y= ∈ ∈    

           ( )~ 1, , 1, 2,...,i iY B p i N⊥⊥ =       (12) 
 The multiple logistic regression model is denoted as 

follows 

( ) ( )
11| , 1,2,...,

1 exp
i i iP P Y x i N

xα β
= = = =

⎡ ⎤′+ − +⎣ ⎦                                                            
(13) 

where ( )1 2, , ,..., nβ α β β β′ =  are parameters vector of  
regression coefficients. 

5.2.  Multiple logistic regression classifier [5] 

We can obtain the likelihood function and log 
likelihood function as following equations (14) and (15) 

      
( ) ( )1

1 2
1,2,...,

, ,..., 1 ii
yy

N i i
i N

L p p p p p −

=

= −∏   (14)     

( ) ( )( )1 2
1

log , ,..., log 1 1 log
N

N i i i i
i

l L p p p y p y p
=

= = + − −⎡ ⎤⎣ ⎦∑
          

(15) 
And we can get 

( ) ( )( )

( )( ) ( )( )
1
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, log 1 1 log

log 1 1

N

i i i i
i

N

i i i
i

l l y p y p

exp x y x

α β

α β α β
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∑

∑
 

(16) 
                                                    

Where ( )1 2, , ,..., n
nR Rα β β β β′∈ = ∈  

 Using Newton-Raphson’s iterative algorithm, we can 
get the estimated regression coefficients of the multiple 
logistic regression model and the estimated multiple logistic 
regression equation as follows: 
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Increment k; until 1 1

1

ˆ ˆ
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n nk k
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6.  SVM-Logistic regression classifier 

In this paper, an improved hybrid classifier combining 
SVM and logistic regression is proposed here. 

First step, using the SVM classifier, we can find the 
signed distance, ( )id x , between the point 

( )1 2, ,...,i i i inx x x x= and the hyperplane in SUM. 
Second step, to consider the sample data 

( )( ), , 1, 2,...,i id x y i N= , using the simple logistic 

regression  to classify iy . 

6.1.  Mathematical formulas 

Let ( )1 2, ...., , 1, 2,...,i i in ix x x y i N=   be a sample data, 
satisfying 

( ) { }1 2, ,..., , 0,1n
i i i in ix x x x R y= ∈ ∈       (26) 

Using the above support vector machine (SVM) 
algorithm, from equation (11), for any point n

ix R∈ , 
we can obtain the signed distance as below 

( ) ( )( ) 1i i id x w x bϕ ξ′= + − −⎡ ⎤⎣ ⎦           (27) 

6.2.  Simple logistic regression classifier of the working 
sample data 

Let the working sample data ( )( ), , 1, 2,...,i id x y i N=  

satisfying ( ) { }, 1,0i id x R y∈ ∈  

               ( )~ 1, , 1, 2,...,i iY B p i N⊥⊥ =       (28) 
The simple logistic regression model is denoted as follows 
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1 expi i i
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P P Y d x i N
d xα β

= = = =
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(29) 
Similarly as multiple logistic regression classifier, we 

can get log likelihood function, the estimated regression 
coefficients of the simple logistic regression model and the 
estimated simple logistic regression equation as follows: 
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7.  Experiment and result  

The sequence data of serotype H5 of Influenza A 
viruses with two classes used in this research were obtained 
from public databases: Influenza Sequence Database 
(http://www.flu.lanl.gov). The sample included 90 HA 
protein sequences of human infections and 90 HA protein 
sequences of bird infections. 

The protein residues were coded according to its 
physicochemical quantities of acidity, Van der waal volume, 
surface area and hydrophobicity in the situation of single 
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amino acid as Table 1. 
Computing the Hurst exponents of each non-symbolic 

sequences of the HA proteins, we can obtain four features 
represented as Hurst exponents respectively in each 
sequences of the HA protein. 

The above real data with four features in terms of 
Hurst exponents is applied to evaluate the performances of 
the Support Vector Machine (SVM) algorithm, logistic 
regression and the proposed classifier combining SVM and  
logistic regression classifier by using 5-fold 
Cross-Validation method to compute the accuracies of the 
response category variable. 

The experimental results for Accuracies of above three 
classifiers are listed in Table 2. We can find that our new 
classification algorithm is useful and batter than SVM and 
logistic regression, respectively. 

 
Table 2  Accuracies of  three classifiers 
Classifier 5-fold CV accuracy 

SVM 0.8056 
LR 0.8833 

SVM-LR 0.9000 

8.  Conclusions and future works 

In search of good classifier of influenza viruses is an 
important issue to prevent pandemic flu.  In this paper,   
a novel classification algorithm of HA proteins integrating 
SVM and logistic regression based on 4 kinds of Hurst 
exponents for each protein sequence is proposed. This 
method not used before is the first one integrating the 
physicochemical properties, fractal property, SVM and 
logistic regression classifier. For evaluating the 
performance of this new algorithm, a real data experiment 
by using 5-fold Cross-Validation accuracy is conducted. 
Experimental result shows that this new classification 
algorithm is useful and batter than SVM and logistic 
regression, respectively. 

Our proposed new classifier can be used to classify not  
only the data of Influenza A viruses but also the data of 
other biological sequences. 

In future, we will consider look for some further 
improving classification algorithms by using Hurst 
exponent and other hybrid Classifiers. 
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Abstract 

When  the  multicollinearity  within  independent 
variables  occurs  in  the  multiple  regression  models,  its 
performance  will  always  be  poor.  Replacing  the  above 
models with the ridge regression model is the traditional 
improved method.  In  our  previous  work,  we  found  that, 
the  Choquet  integral  regression  model  with  λmeasure 
based on the new support, γsupport, proposed by us has 
the  best  performance  than  before.  In  this  study,  for 
finding  the  further  improved  model,  we    replaced  two 
well  known  fuzzy  measures,  Pmeasure  and  λmeasure 
with  our  new  fuzzy  measure,  Rmeasure  in  Choquet 
integral regression model with the new support, γsupport. 
For  comparing  the  Choquet  integral  regression  model 
with Pmeasure, λmeasure and Rmeasure based on two 
different  fuzzy  supports,  Vsupport  and  γsupport, 
respectively,  the  traditional  multiple  regression  model 
and  the  ridge  regression model,  a  real  data  experiment 
by  using  a  5fold  crossvalidation  mean  square  error 
(MSE)  is  conducted. Experimental  result  shows  that  the 
Choquet integral regression model with Rmeasure based 
on γsupport has the best performance. 

1. Introduction 

When  interactions among  independent  variables  exist 
in forecasting problems,  the performance of  the multiple 
linear  regression  models  is  poor.  The  traditional 
improved methods exploited  the  ridge  regression models 
[1].  Recently,  some  Choquet  integral  regression  models 
based  on  different  fuzzy  measures  were  used  by  our 
previous works  to  further  improve  this  situation  [2],  [3], 
[4], [5]. 

In  our  previous  works  [6],  we  found  that  if  the 
Choquet  integral  regression  model  based  on  the  same 
fuzzy  measure  is  derived  from  different  fuzzy  support, 
then it may have different performances,  in other words, 
the  better  performance  of  a  Choquet  integral  regression 
model is not only derived from a better fuzzy measure but 
also  first  derived  from  a  better  fuzzy  support.  Hence, 
before  we  find  the  better  fuzzy  measure  of  a  Choquet 
integral  regression model,  we  need  first  to  find  a  better 

fuzzy support of the same fuzzy measure of that Choquet 
integral  regression  model.  And  we  found  that  the 
Choquet integral regression model with  λmeasure based 
on  the  new  support,  γsupport,  proposed  by  us  has  the 
best performance than before. 

In  this  study,  the  Choquet  integral  regression  model 
with  two well  known  fuzzy measures,  Pmeasure  and  λ 
measure and our new fuzzy measure, Rmeasure based on 
the  Vsupport  and  γsupport,  respectively,  were 
considered. For comparing the performances of the above 
different  Choquet  integral  regression  models  with  the 
multiple regression model and the ridge regression model, 
a real data experiment by using a 5fold crossvalidation 
mean square error (MSE) is conducted. 

This  paper  is  organized  as  followings:  The multiple 
linear  regression  and  ridge  regression  are  introduced  in 
section 2, two well known fuzzy measure, Pmeasure and 
λmeasure  are  introduced  in  section  3,  Rmeasures  are 
introduced  in  section  4,  two  kind  fuzzy  supports:  V 
support  and  γsupport  are  described  in  section  5.  The 
Choquet  integral  regression  model  based  on  fuzzy 
measures  are  described  in  section  6.  Experiment  and 
result are described  in section  7,  and  final  section  is  for 
conclusions and future works. 

2.  The  multiple  linear  regression,  ridge 
regression [1] 

Let ( ) 2 ,   ~ N 0,  n Y X I β ε ε σ = +  be  a  multiple  linear 

model, ( )  1 ˆ  X X X Y β − ′ ′ =  be  the  estimated  regression 

coefficient  vector,  and ( )  1 ˆ 
k n X X kI X Y β − ′ ′ = +  be  the 

estimated ridge regression coefficient vector, Kenard and 
Baldwin [1] suggested 

2 ˆ ˆ 
ˆ  ˆ 
n k σ
β β 

= 
′ 

.                                  (1) 

3. Fuzzy measures
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The well known fuzzy measures, Pmeasure proposed 
by Zadah in 1978, and the λmeasure proposed by Sugeno 
in 1974, are concise introduced as follows. 

3.1. Fuzzy measures [7], [8], [9] 

A fuzzy measure µ  on a finite set X is a set function 

[ ] : 2 0,1 X µ →  satisfying the following axioms: 

(i) ( ) ( ) 0 , 1 X µ φ µ = =  (boundary conditions)  (2) 

(ii) ( ) ( ) A B A B µ µ ⊆ ⇒ ≤  (monotonicity)  (3) 

3.2. Singleton measures [4], [5] 

A singleton measure of a fuzzy measure µ  on a finite 
set X is a function [ ] : 0,1 s X →  satisfying: 

( ) { } ( ) , s x x x X µ = ∈  (4) 

( ) s x  is called the density of singleton  x . 

3.3. Pmeasure [10] 

For given singleton measures s, a Pmeasure,  P g  , is a 
fuzzy measure on a finite set X, satisfying: 

( ) ( ) { } ( ) 2 max max X 
P P x A x A 

A g A s x g x ∀ 

∈ ∈ 
∈ ⇒ = =  (5) 

3.4. λmeasure [8], [9] 

For given singleton measures s, a λmeasure,  g λ ,  is a 
fuzzy measure on a finite set X, satisfying: 
(i)  , 2 , , X A B A B A B X φ ∈ = ≠ ∩ ∪ 

( ) ( ) ( ) ( ) ( ) g A B g A g B g A g B λ λ λ λ λ λ ⇒ = + + ∪  (6) 

(ii) ( ) ( ) { } ( ) 
1 

1 1 0, 
n 

i i i 
i 

s x s x g x λ λ λ 
= 

+ = + > =     ∏  (7) 

Note that once the singleton measure is known, we can 
obtain  the  values  of  λ  uniquely  by  using  the  previous 
polynomial  equation.  In  other  words,  λmeasure 
has a unique solution without closed form. 

4. Rmeasure [4] 

For given singleton measure s, a Rmeasure,  R g  ,  is a 
fuzzy measure on a finite set X,  X n =  , satisfying: 

(i) [ ) 0, R∈ ∞  (8) 

(ii) { } ( ) ( ) 1 R 
x X x X 

s x g x 
∈ ∈ 

= = ∑ ∑  (9) 

(iii)  , ( 1) 0 A X n A A R ∀ ⊂ − + − > 

( ) 
( ) 

( ) 
( ) 

( 1) 
( ) max 1 max 

1 
x A 

R  x A x X 

A R s x 
g A s x s x 

n A A R 
∈ 

∈ ∈ 

− 
  ⇒ =   + −           − + −   

∑ 

(10) 
[Property] 
(i)  Rmeasure  has  infinitely  many  solutions with  closed 

form. 
(ii) When R=0,  the  Rmeasure  is  just  a  Pmeasure with 

closed form. 
(iii)  R g  is an increasing function of R. 

5. Fuzzy supports 

For  given  singleton measures  s  of  a  fuzzy measure  μ 
on a finite  set X,  if ( )  1 

x X 
s x 

∈ 

= ∑  ,  then s  is called a  fuzzy 

support  measure  of  μ,  or  a  fuzzy  support  of  μ,  or  a 
support of μ. Two kinds of fuzzy supports are introduced 
as below. 

5.1. Vsupport [6] 

Let  μ  be  a  fuzzy  measure  on  a  finite  set, 
{ } 1 2 , ,...,  n X x x x =  be  the  set  of  n  courses, 

( ) ( ) ( ) 1 2 , ,..., , 1, 2,..., j j N j f x f x f x j n =  be the evaluating 

scores of subject  i  for singleton  j x  , satisfying: 

( ) 0 1, 1, 2,..., , 1,2,..., i j f x i N j n < < = =  (11) 

If ( ) ( ) ( ) 
( ) ( ) 

1 

, 1, 2,..., 
ar j 

j  n 

ar k 
k 

V f x 
V x j n 

V f x 
= 

= = 

∑ 
(12) 

where ( ) ( ) ( ) ( ) 
2 

1 1 

1 1 N N 

ar j i j i j 
i i 

V f x f x f x 
N N = = 

  
= −   

    
∑ ∑  (13) 

satisfying ( ) 0 1 j V x ≤ ≤  and ( ) 
1 

1 
n 

j 
j 

V x 
= 

= ∑  (14) 

then  the  function [ ] : 0,1 V X →  satisfying 

{ } ( ) ( ) x V x µ =  ,  x X ∀ ∈  is  a  fuzzy  support  of  μ,  called 

Vsupport of μ. 

5.2. γ support [6] 

Let  μ  be  a  fuzzy  measure  on  a  finite  set 
{ } 1 2 , ,...,  n X x x x =  ,  i y  be  global  response  of  subject  i 

and ( ) i j f x  be  the  evaluation  of  subject  i  for  singleton 

j x  , satisfying:
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( ) 0 1, 1, 2,..., , 1,2,..., i j f x i N j n < < = =  (15) 

If ( ) ( ) ( ) 
( ) ( ) 

1 

1 
, 1, 2,..., 

1 

j 
j  n 

k 
k 

r f x 
x j n 

r f x 
γ 

= 

+ 
= = 

  +   ∑ 
,  (16) 

where ( ) ( )  ,  j 

j 

y x 
j 

y x 

S 
r f x 

S S 
=  (17) 

2 
2 

1 1 

1 1 n N 

y i i 
i i 

S y y 
N N = = 

  
= −     

  
∑ ∑  (18) 

( ) ( ) 
2 

2 

1 1 

1 1 
j 

n N 

x i j i j 
i i 

S f x f x 
N N = = 

  
= −   

    
∑ ∑  (19) 

( ) ( ) , 
1 1 1 

1 1 1 
j 

n N N 

y x i i i j i j 
i i i 

S y y f x f x 
N N N 

= = = 

    
    = − − 
        

∑ ∑ ∑ 
(20) 

Satisfying ( ) 0 1 j x γ ≤ ≤  and ( ) 
1 

1 
n 

j 
j 

x γ 
= 

= ∑  (21) 

then the function [ ] : 0,1 X γ →  satisfying { } ( ) ( ) x x µ γ =  , 

x X ∀ ∈  is a fuzzy support of μ, called γsupport of μ. 

6. Choquet integral regression models 

6.1. Choquet integral [4], [9], [10] 

Let  μ  be  a  fuzzy  measure  on  a  finite  set  X.  The 
Choquet  integral  of  : i f X R + →  with  respect  to  μ  for 
individual  i  is denoted by 

( ) ( ) ( ) ( ) ( ) ( ) 1 
1 

, 1,2,..., 
n 

i 
C i i i j j j 

j 

f d f x f x A i N µ µ − 
= 

  = − =     ∑ ∫ 
(22) 

where ( ) ( ) 0  0 i f x =  , ( ) ( ) i  j f x  indicates  that  the  indices 

have been permuted so that 

( ) ( ) ( ) ( ) ( ) ( ) 1 2 0 ... i i i  n f x f x f x ≤ ≤ ≤ ≤  (23) 

( ) ( ) ( ) ( ) { } 1 , ,..., j j j n A x x x + =  (24) 

6.2.  Choquet  integral  regression  models  [2],  [3], 
[4], [5], [6] 

Let  1 2 , ,...,  N y y y  be  global  evaluations  of  N  objects 

and ( ) ( ) ( ) 1 2 , ,..., , 1, 2,..., j j N j f x f x f x j n =  ,  be  their 

evaluations of  j x  , where  : , 1, 2,..., i f X R i N + → =  . 

Let μ be a fuzzy measure,  ,  R α β ∈  , 

( ) 2 , ~ 0, , 1, 2,..., i C i i i y f dg e e N i N µ α β σ = + + = ∫ 
(25) 

( ) ( ) 2 
,  1 

ˆ ˆ , arg min 
N 

i C i 
i 

y f dg µ α β 
α β α β 

= 

  
= − −   

  
∑ ∫  (26) 

then  ˆ ˆ ˆ  , 1, 2,..., i i y f dg i N µ α β = + = ∫  is  called  the 

Choquet integral regression equation of μ, where 
ˆ  / yf ff S S β = 

1 1 

1 1 ˆ ˆ 
N N 

i i 
i i 

y f dg 
N N µ α β 

= = 

= − ∑ ∑∫  (27) 

1 1 1 

1 1 

1 

N N N 

i i i k 
i i k 

hy 

y y f dg f dg 
N N 

S 
N 

µ µ ∗ ∗ 

= = = 

    
− −     

        = 
− 

∑ ∑ ∑ ∫ ∫ 

2 

1 1 

1 

1 

N N 

i k 
i k 

hh 

f dg f dg 
N 

S 
N 

µ µ ∗ ∗ 

= = 

  
−   

    = 
− 

∑ ∑ ∫ ∫ 
(28) 

7. Experiment and result 

A  real  data  set  with  59  samples  from  a  junior  high 
school  in  Taiwan  including  the  independent  variables, 
examination  scores  of  four  courses,  and  the  dependent 
variable, the score of the Basic Competence Test of junior 
high  school  listed  in  Table  2  is  applied  to  evaluate  the 
performances of three Choquet integral regression models 
with Pmeasure, λmeasure, and Rmeasure  based  on V 
support,  and  γsupport  respectively,  a  ridge  regression 
model, and a multiple linear regression model by using 5 
fold cross validation method to compute the mean square 
error (MSE)  of the dependent variable. The  formulas of 
MSE is 

2 

1 

1  ˆ ( ) 
N 

i i 
i 

MSE y y 
N = 

= − ∑  (29) 

For  any  fuzzy  measure,  μmeasures,  once  the  fuzzy 
support of the μmeasure is given, all the event measures 
of μ can be  found, and  then,  the Choquet  integral  based 
on μ and the Choquet integral  regression equation based 
on μ can also be found. 

The  singleton  measures,  Vsupport  and  γsupport  of 
the  Pmeasure,  λmeasure,  and  Rmeasure  can  be 
obtained by using the formulas (12) and (16), respectively.
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The  experimental  results  of eight  forecasting models 
are  listed  in  Table  I.  We  can  find  that  the  Choquet 
integral  regression  model  with  Rmeasure  outperforms 
other forecasting regression models. 

8. Conclusions and future works 

When  the  subtests  of  a  composite  test  are  with 
interaction,  the  performance  of  the  traditional  additive 
scale  method  is  poor.  Nonadditive  fuzzy  measures  and 
fuzzy integral can be applied to improve this situation. In 
this  study,  a  real  data  set  from  a  junior  high  school 
including  the  independent  variables,  test  scores  of  four 
courses  with  interaction,  and  the  dependent  variable, 
junior  high  school  graduates’  scores  of  the  Basic 
Competence  Test  (BCT)  are  applied  to  evaluate  the 
performances  of  the  Choquet  integral  regression  model 
with  three  well  known  fuzzy  measures,  Pmeasure,  λ 
measure, and Rmeasure based on two different supports, 
Vsupport,  and  γsupport  respectively,  the  traditional 
multiple linear regression model, and the ridge regression 
model.  Experimental  result  shows  that  the  following 
situations: 

Choquet  integral  regression  model  with  Rmeasure 
based on γsupport has the best performance. 

(ii) Based on  the same fuzzy  support,  not  only  the γ 
support  but  also  the  Vsupport,  the  Choquet  integral 
regression  model  with  R  measure  is  better  than  which 
with fuzzy measure, λmeasure and Pmeasure. 

(iii)  The  Choquet  integral  regression model with  the 
same  measure,  Pmeasure,  λmeasure,  and  Rmeasure, 
respectively,  the  performance  of  which  is  derived  from 
the γsupport is better than which from the Vsupport. 

(iv)  The  Choquet  integral  regression  model  with  λ 
measure,  and  Rmeasure  based  on  Vsupport  and  γ 

support,  respectively,  are  all  better  than  the  ridge 
regression and the multiple regression model. 

(v)  The  Choquet  integral  regression  model  with  P 
measure is not a good model. 

In future we will apply the proposed Choquet integral 
regression  model  with  the  better  measure  based  on  the 
best  fuzzy  support,  γsupport,  to  develop  multiple 
classifier system. 
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13  75  75  85  80  39  43  47  58  66  62  15 
14  74  63  69  75  12  44  51  60  63  64  18 
15  68  78  85  75  27  45  60  65  75  70  23 
16  71  74  80  77  26  46  68  68  80  74  26 
17  49  60  69  64  13  47  52  60  70  65  20 
18  73  78  84  81  39  48  57  65  75  70  24 
19  68  70  74  76  40  49  70  66  70  74  13 
20  54  56  62  68  7  50  53  68  74  80  30 
21  53  68  74  71  11  51  68  68  78  76  35 
22  56  63  69  75  21  52  57  60  68  64  23 
23  70  80  78  70  31  53  61  62  70  70  25 
24  51  74  82  75  49  54  59  70  80  76  37 
25  61  66  72  78  33  55  59  62  70  78  29 
26  67  70  80  75  35  56  52  64  76  70  27 
27  59  75  80  82  27  57  68  70  80  75  33 
28  53  56  70  63  22  58  71  76  74  78  38 
29  56  56  65  61  6  59  72  66  78  72  19 
30  52  57  67  62  15
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Abstract 
 

The well known fuzzy partition clustering algorithms 
are most based on Euclidean distance function, which 
can only be used to detect spherical structural clusters. 
GK clustering algorithm and GG clustering algorithm, 
were developed to detect non-spherical structural 
clusters, but both of them fail to consider the 
relationships between cluster centers in the objective 
function, needing additional prior information. In our 
previous studies, we developed two improved algorithms, 
FCM-M and FCM-CM based on unsupervised 
Mahalanobis distance without any additional prior 
information. And FCM-CM is better than FCM-M, since 
the former has the more information about the overall 
covariance matrix than the later. In this paper, an 
improved new unsupervised algorithm, “fuzzy c-mean 
based on complete Mahalanobis distance and separable 
criterion without any prior information (FCM-CMS)”, is 
proposed. In our new algorithm, not only the local and 
overall covariance matrices of all clusters but also an 
additional separable criterion were considered. It can get 
more information and higher accuracy by considering the 
additional separable criterion than FCM-CMx. A real 
data set was applied to prove that the performance of the 
FCM-CMS algorithm is better than those of the 
traditional FCM algorithm and our previous FCM-M. 
 
1. Introduction 
 

In the 1930s, as an Indian statistician, Mahalanobis 
developed the distance, so called “Mahalanobis distance” 
which is a distance by using the inverse of the covariance 
matrix as the metric. Mahalanobis distance is a distance in 
the geometrical sense because the covariance matrices as 
well as its inverse are positive definite matrices [1]. 

As we known, the clustering plays an important role in 
data analysis and interpretation. It groups the data into 
classes or clusters so that the data objects within a cluster 
have high similarity in comparison to one another, but are 
very dissimilar to those data objects in other clusters. 

Fuzzy partition clustering is a branch in cluster 
analyses. It is widely used in pattern recognition field. 
The well known one, such as, C. Bezdek’s “Fuzzy C-
Mean (FCM)” [2], is all based on Euclidean distance 
function. The fuzzy partition clustering algorithm can 
only be used to detect the data classes with same super 
spherical shapes. 

Extending Euclidean distance to Mahalanobis distance, 
the well known fuzzy partition clustering algorithms, 
Gustafson-Kessel (GK) clustering algorithm [4] and 
Gath-Geva (GG) clustering algorithm [3] were developed 
to detect non- spherical structural clusters, but these two 
algorithms fail to consider the relationships between 
cluster centers in the objective function, GK algorithm 
must have prior information of shape volume in each data 
class, otherwise, it can only be considered to detect the 
data classes with same volume. GG algorithm must have 
prior probabilities of the clusters. 

In our previous works [7], [8],  we added a regulating 
factor of covariance matrix to each class in objective 
function, and deleted the constraint of the determinants of 
covariance matrices in GK Algorithm,  we developed two 
new unsupervised algorithms, FCM-M and FCM-CM,  
And FCM-CM is better than FCM-M, since the former 
has the more information about the overall covariance 
matrix than the later. 

In this paper, an improved new unsupervised 
algorithm, “fuzzy c-mean based on complete Mahalanobis 
distance and separable criterion without any prior 
information (FCM-CMS)”, is proposed.  It can get more 
information and higher accuracy by considering the 
additional separable criterion than FCM-CM.  

A real data set was applied to prove that the 
performance of the FCM-CMS algorithm is better than 
those of the traditional FCM algorithm and our previous 
FCM-CM and FCM-M’ 

This paper is organized as followings: The FCM 
algorithm is introduced in section 2, FCM-M is 
introduced in section 3, FCM-CM is introduced in section 
4, FCM-CMS is described in section 5.  Experiment and 
result are described in section 6, and final section is for 
conclusions and future works. 
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2. Fuzzy c-Mean Algorithm 
 

Fuzzy c-Mean Algorithm (FCM) is the most popular 
objective function based fuzzy clustering algorithm, it is 
first developed by Dunn [6] and improved by Bezdek [3]. 
The objective function used in FCM is given by Equation 
(1) 

 

            (1) 
[ ]0,1ijμ ∈  is the membership degree of data object 

jx in cluster iC  and it satisfies the following constraint 
given by Equation (2) 

 

(2) 

 

C is the number of clusters, m is the fuzzifier, m>1, 
which controls the fuzziness of the method. They are both 
parameters and need to be specified before running the 
algorithm. 22

ij j id x a= − is the square of the Euclidean 

distance between data object jx to center ia . Minimizing 
objective function Eq. (1) with constraint Eq. (2) is a non-
trivial constraint nonlinear optimization problem with 
continuous parameters ia  and discrete parameters ijμ . So 
there is no obvious analytical solution. Therefore an 
alternating optimization scheme, alternatively optimizing 
one set of parameters while the other set of parameters are 
considered as fixed, is used here. Then the updating 
function for ia  and ijμ  is obtained as Eq. (3) ~ (4) 

 

(3) 

 

(4) 

                                . 

3. FCM-M Algorithm 
 

In our previous study [7], for improving the above 
two problems, we added a regulating factor of covariance 
matrix, 1ln i

−− Σ+ , to each class in objective function, 
and deleted the constraint of the determinant of 
covariance matrices, i iM ρ= , in GK Algorithm as the 
objective function (5). We can obtain the objective 
function of Fuzzy c-Mean based on adaptive Mahalanobis 
distance (FCM-M) as following: 

( )

( ) ( )1 1

1 1

, , ,

ln

m
FCM M

c n
m
ij j i i j i i

i j

J U A X

x a x aμ

−

− −

= =

Σ =

⎡ ⎤′− Σ − − Σ⎢ ⎥⎣ ⎦
∑ ∑   (5) 

To minimize the objective function (5) with constraint (2) 
respect to parameters ia , 

jα , ijμ , iΣ ., we can obtained the 
updating equations as bellows 

 
(6) 

 
 

(7) 
 

 
 
 

(8) 
 

 
4. FCM-CM Algorithm 
 

In our previous study [8, 9], for improving our 
proposed FCM-M, we added a regulating factor about 
the overall covariance matrix in objective function (5), 
and we can get the following new objective function   

( )

( ) ( ) ( ) ( )1 1 1

1 1
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ln
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FCM CMS
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    (9) 

we can obtained the updating equations as bellows 

 
(10) 

 
 

(11) 
 

 
 
 

(12) 
 
 
5. FCM-CMS Algorithm 
 

Now, for improving the algorithm FCM-CM,  we 
added a separable factor in  objective function (9), and we 
can get the following new objective function  of the new 
algorithm FCM-CMS,  

( ) 22

1 1 1 1

, ,
c n c n

m m m
F C M ij i j i j j i

i j i j
J U A X d x aμ μ

= = = =

= = −∑ ∑ ∑ ∑

1

1 1
( )( ) , 1, 2, ...,

n n
m m

i ij j ij
j j

a x i cμ μ −

= =

= =∑ ∑

( ) ( ) ( ) ( )
11

1 1

1

mc

ij j i j i j l j l
l

x a x a x a x aμ

−
− −

=

⎡ ⎤
⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥′ ′= − − − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

∑

1
1 , 1 , 2 , . . . ,

c

i j
i

j nμ
=

= ∀ =∑

( )( )
1

1

n
m
ij j i j i

j
i n

m
ij

j

x a x aμ

μ

=

=

′− −
Σ =

∑

∑

( ) ( )
( ) ( )

11
11 1

1 11

ln

ln

m
c j i i j i i

ij
s

j s s j s s

x a x a

x a x a
μ

−

−− −

− −=

⎡ ⎤
⎡ ⎤′⎢ ⎥⎡ ⎤− Σ − − Σ⎣ ⎦⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥′ ⎡ ⎤− Σ − − Σ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

⎣ ⎦

∑

( ) ( ) ( )1 0 01

1 1
( ) ( ), 1, 2,...,

n n

i ij ij j
j j

a x i cμ μ−

= =

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦∑ ∑

( )( )
1

1

n
m
ij j i j i

j
i n

m
ij

j

x a x aμ

μ

=

=

′− −
Σ =

∑

∑

( ) ( )
( ) ( )

11
11 1

1 11

ln

ln

m
c j i i j i i

ij
s

j s s j s s

x a x a

x a x a
μ

−

−− −

− −=

⎡ ⎤
⎡ ⎤′⎢ ⎥⎡ ⎤− Σ − − Σ⎣ ⎦⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥′ ⎡ ⎤− Σ − − Σ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

⎣ ⎦

∑

( ) ( ) ( )1 0 01

1 1
( ) ( ), 1, 2,...,

n n

i ij ij j
j j

a x i cμ μ−

= =

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦∑ ∑

8888



 

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1

1 1

, , ,

ln

1
1

m

FCM CMS

c n
m

ij j i i j i i i t t i ti j

c c
m

il i l i li l

J U A X

x a x a a a a a

v a a a a
c c

μ

−

− − −

= =

= =

∑∑

∑∑

Σ

⎡ ⎤′ ′= − Σ − − Σ − − Σ −⎢ ⎥⎣ ⎦

′− − −
−

  (13) 

Constraints: membership, 

1

1 ,   1, 2, ..., ,  
c

ij
i

j nμ
=

= ∀ =∑                   (14) 

where 

 

 

 

 

and 

 

 

Using the Lagrange multiplier method, to minimize 
the objective function (13) with constraint (14) respect to 
parameters 

ia , ijμ , iΣ , we can obtain the updating 

functions for ia , ijμ , and iΣ  are obtained as (15), (16).  
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The new fuzzy clustering algorithm (FCM-CMS) 
can be summarized in the following steps: 

Step 1: Determining the number of cluster; c and m-
value (let m=2), given converging error, 0ε > (such as 

0.001ε = ).  
Method 1: choose the result membership matrix of 

FCM algorithm as the initial one. 
Method 2: let 

( )0 , 1,2,...,ia i c=  be the result centers of k-
mean algorithm, and                     be distances between 

data object jx to center
( )0
ia . 
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Step 2: Find  
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Step 3: Increment k until   

 

 

 

 
6. Numerical Example 
 

A real data set of students with sample size 146 from 
elementary schools was selected. The main factors of the 
data were calculated by using factor analysis. According 
to the main factors, the samples were assigned to 4 
clusters based on the clustering analysis. The results were 
shown in Table 1. 

 
Table 1. The characteristics of 4 clusters 

Cluster samples 
size Concepts 

average distance of the 
points from center of 

cluster 
1 36 Partition -.14984 
2 89 Unit .21161 
3 16 Fraction -.30416 

4 5 Unknown 
unit -.74490 

 
 

Each 15 sample points were randomly drawn from 
Cluster 1, cluster 2, and cluster 3, respectively, and 5 from 
cluster 4. 

The classification accuracies of testing samples were 
shown in Table 2. 

 
 

Table 2. Classification accuracies of testing samples. 
Algorithms Accuracies (%) 

FCM 36 
FCM-M 38 
FCM-CM 30 
FCM-CMS 44 

 
From the data of Table 2, we found that using the 

Fuzzy Clustering Algorithm of FCM-CMS could obtain 
the best results, even better than that of our previous 
research [8]. 

 
7. Conclusions and future works 
 

The well known fuzzy partition clustering algorithms 
are most based on Euclidean distance function, which can 
only be used to detect spherical structural clusters. GK 
clustering algorithm and GG clustering algorithm, were 
developed to detect non-spherical structural clusters, but 
both of them needed additional prior information .in their 
objection functions. In our previous studies, we proposed 
two improved algorithms, FCM-M and FCM-CM based 
on unsupervised Mahalanobis distance without any 
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additional prior information. And FCM-CM is better than 
FCM-M. In this paper, we proposed a further improved 
new unsupervised algorithm, “fuzzy c-mean based on 
complete Mahalanobis distance and an additional 
separable criterion without any prior information (FCM-
CMS)”. This new algorithm, not only the local and 
overall covariance matrices of all clusters but also an 
additional separable criterion were considered. It can get 
more information and higher accuracy by considering the 
additional separable criterion than FCM-CMx. A real data 
set was applied to prove that the performance of the 
FCM-CMS algorithm is better than those of the 
traditional FCM algorithm and our previous FCM-M and 
FCM-CM 

In future, we will consider improve the initial value 
problem by using the swarm algorithm. 
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Abstract 

In  search  of  good  classification  algorithm  of 
thermostable  proteins  is  an  important  issue.    In  this 
paper,      a  novel  classification  algorithm  of 
thermostable  proteins  by  using  Hurst  exponent  and 
SVM  classifier  is  proposed.  This  method  not  used 
before  is  the  first  one  integrating  the  physics 
chemistry  properties,  fractal  property  and  support 
vector  machine  (SVM)  classifier.  For  evaluating  the 
performance  of  this  new  algorithm,  a  real  data 
experiment by using 5fold and Leaveoneout Cross 
Validation accuracy is conducted. Experimental result 
shows that this new classification algorithm is feasible 
and useful. 

1. Introduction 

In  search  of  good  classification  algorithm  of 
thermostable  proteins  is  an  important  issue.    In  this 
paper,      a  novel  classification  algorithm  of 
thermostable  proteins  by  using  Hurst  exponent  and 
SVM  classifier  is  proposed.  This  method  not  used 
before  is  the  first  one  integrating  the  physics 
chemistry  properties,  fractal  property  and  support 
vector machine (SVM) classifier. 

First step, a thermostable proteins data set with two 
classes  was  downloaded  from  the  Protein Data  Bank 
(PDB), http://www.rcsb.org. 

Second step, replacing four feature scores with each 
residue of amino acid in sequence of the thermostable 
proteins  by  using  the  four  feature  scaling  estimators, 

we  can  obtained  four  nonsymbolic  sequences  of  the 
thermostable proteins. 

Third step, computing the Hurst exponents of each 
nonsymbolic  sequences  of  the  thermostable  proteins, 
we  can  obtained  four  features  of  Hurst  exponents  in 
each sequences of the thermostable protein. 

Last step, the well known and appealing classifier, 
Support  Vector  Machine  (SVM),  is  used  to 
discriminate  the  correct  class  of  the  40  thermostable 
proteins  with  four  features  of  Hurst  exponents  For 
evaluating the performance of this new algorithm, the 
above thermostable proteins data experiment by using 
5fold and Leaveoneout CrossValidation accuracy is 
conducted. 

This paper is organized as  followings:  four  feature 
scoring  estimators  are  introduced  in  section  2.  Hurst 
exponent  is  introduced  in  section  3,  support  vector 
machine  classifier  is  introduced  in  section  4, 
experiment  and  result  are  described  in  section  7  and 
final section is for conclusions and future works. 

2. Four feature scaling estimators 

2.1. Solvent accessible surface area (ASA) 

Residues  classified  as  buried  or  exposed  are 
conventionally  described  by  a  geometric  parameter 
calculated  using  the  solventaccessible  surface  area 
(ASA), which is generated by rolling a spherical probe 
with  a  radius  of  1.4 Å  over  the  surface  of  a  protein. 
The ASA of a protein was obtained using POPS [1], [2] 
on  the  web  side  (mathbio.nimr.mrc.ac.uk/~ffranca/ 
POPS/),  selecting  output  residue  areas  (POPS_R).
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Both the polar (hydrophilic) and apolar (hydrophobic) 
surface areas can be obtained  from  the output  residue 
areas, which were  then  changed  to  the  percentage  of 
apolar area for each residue in a protein. 

2.2. Exposed/ Buried 

The solvent accessibility percentages of the residues 
were  obtained  using  the  ASAView  [3]  data  base 
(www.netasa.org/asaview/).  Residues  were  classified 
to be buried in a protein core as the values between 0 
50%,  and  those  were  considered  to  be  exposed  to 
solvent when the percentage exceeded 50%. 

2.3. Electrostatic interactions 

The number of ion pairs (electrostatic interactions) 
was calculated according to the following criterion [4]: 
two  oppositely  charged  residues  were  considered  an 
ion pair if the distance between the oppositely charged 
atoms of  these  residues was  less  than  6 Å. Asp, Glu, 
Arg, Lys  and His  residues were  used  to  calculate  the 
ion pairs. 

2.4. Contact energies 

A  20×20  matrix  of  effective  contact  energies,  the 
interaction  energies  between  all  amino  acids  pairs, 
was  developed  by  Miyazawa  and  Jernigan  [5],  [6], 
which  was  also  called  MJ  matrix.  The  MJ  effective 
energy  (eij), which  is  the  element  of MJ matrix,  was 
derived  from  all  the  possible  interaction  energies, 
including  hydrophobic  and  solvation  energies. 
Furthermore,  the  hydrophobic  interaction  is  the 
dominant contribution to the MJ effective energy. The 
eij can be presented as the following equation 

' 
2 

ii jj 
ij ij 

e e 
e e 

+ 
= +  (1) 

The e'ij is the mixing term, which is the free energy 
change  upon  the  mixing  of  residues  of  type  i  and 
residues  of  type  j  when  the  contacts  in  selfpairs  ii 
and jj are separated to form ij pairs. The eii or ejj is 
the free energy change after the desolvation of residue 
i  or  of  residue  j  to  form  the  selfpairs  ii  or  jj.  The 
values  of  eii  or  ejj  should  have  high  correlation with 
the  hydrophobicity  of  residue  type  i  or  residue  type  j 
[5], [6]. 

The average  contact  energy  of  each  type  of  amino 
acid, ei, was used in this work, and it is defined as: [5], 
[6]. 
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The  supscript  p  denotes  the  total  number  of 
contacts  in  all  proteins,  nij  is  the  total  number  of 
contacts between i and j types of amino acid residues, 
and  nir  is  the  total  number  contacts made  by  residue 
type i. 

3. Hurst exponent 

The  Hurst  exponent  occurs  in  several  areas  of 
applied  mathematics,  including  fractals  and  chaos 
theory,  long  memory  processes  and  spectral  analysis 
[7], [8]. Hurst exponent estimation has been applied in 
areas ranging from biophysics to computer networking. 
Estimation  of  the  Hurst  exponent  was  originally 
developed  in  hydrology.  However,  the  modern 
techniques  for  estimating  the  Hurst  exponent  comes 
from fractal mathematics. 

Estimating  the  Hurst  exponent  for  a  data  set 
provides  a  measure  of  whether  the  data  is  a  pure 
random walk or has underlying trends. Another way to 
state this is that a random process with an underlying 
trend has some degree of autocorrelation. Furthermore, 
when  the  autocorrelation  has  a  very  long  (or 
mathematically  infinite)  decay  this  kind  of  Gaussian 
process  is  sometimes  referred  to  as  a  long  memory 
process. 

The  Hurst  exponent  (H)  is  a  statistical  measure 
used to classify time series. H=0.5 indicates a random 
series while H>0.5 indicates a trend reinforcing series. 
The  larger  the  H  value  is,  the  stronger  the  trend. 
Experiments  with  backpropagation  Neural  Networks 
show  that  series  with  large  Hurst  exponent  can  be 
predicted  more  accurately  than  those  with  H  value 
close  to  0.50.  Thus  the  Hurst  exponent  provides  a 
measure for predictability. 

Three  methods  were  used  most  often  for  the 
estimation of the Hurst exponent: the R/S method, the 
roughness–length (R–L) method and a variogram. The 
R/S  method  (Hurst  et  al.,  1965)  [9]  is  commonly 
perceived  as  the  most  suitable  for  the  time  series 
analysis on the stock market or an optimal volume of 
water  reservoirs,  because  it  presents  the  relationship
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between  irregular  (singular)  rescaled  ranges,  signal 
value  and  their  local  statistical  properties  relative  to 
the scale factor. In this study R/S method is used.  R/S 
method  [10]  is  based  on  empirical  observations  by 
Hurst and estimates H are based on the R/S statistic. It 
indicates (asymptotically) secondorder selfsimilarity. 
H is roughly estimated through the slope of the linear 
line in a loglog plot, depicting the R/S statistics over 
the number of points of the aggregated series. That is, 
given  a  time  sequence  of  observations,  t w  define  the 
series 
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against  logτ  ,  we  expect  to 

get a line whose slope determines the Hurst exponent. 

4.  Support  vector  machine  (SVM)  [11], 
[12], [13], [14] 

Given  the  training  set  of  instancelabeled  pairs 
( ) , , 1,2,..., i i x y i N =  , where 
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i i x R y i N ∈ ∈ − =  (9) 

The  support  vector  machine  (SVM)  algorithm 
(Boser, Guyon, and Vapnik 1992, Cortes and Vapnik 
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For  any  testing  point { } , 1, 1 n 
i i x R y ∈ ∈ −  ,  we  can 

make  an  assignment  according  to  the  following 
formula. 
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5. Experiment and result 

A  thermostable  proteins  data  set  with  two  classes 
was  downloaded  from  the  Protein Data  Bank  (PDB), 
http://www.rcsb.org.  The  sample  included  40 
instances,  20  instances  are  higher  thermostable 
proteins,  and  the  other  20  instances  are  lower 
thermostable proteins. 

Replacing  four  feature  scores  called  solvent 
accessible  surface  area,  exposed/  buried,  electrostatic 
interactions, and contact energies, with each residue of 
amino acid in sequence of the thermostable proteins by 
using  the  four  feature  scaling  estimators,  we  can 
obtained  four  nonsymbolic  sequences  of  the 
thermostable proteins. 

Computing  the  Hurst  exponents  of  each  non 
symbolic  sequences  of  the  thermostable  proteins,  we 
can  obtained  four  features  represented  as  Hurst 
exponents  respectively  in  each  sequences  of  the 
thermostable protein. The transformed data is listed in 
Table 2 

The above  real data with  four  features  in  terms  of 
Hurst  exponents  is  applied  to  evaluate  the 
performances  of  the  Support  Vector Machine  (SVM) 
algorithm  by  using  5fold  and  Leaveoneout  Cross 
Validation  method  to  compute  the  accuracies  of  the 
response category variable. 

The  experimental  results  for  Accuracies  of  SVM 
classifier are listed  in Table 1. We can  find  that both 
5fold  CV  and  Leaveoneout  CV  accuracy  had  the 
similar  result,  the  SVM  classifier  based  on  Hurst 
exponents is a feasible and useful algorithm. 

Table 1  Accuracies of  SVM classifier 
Classification 
algorithm 

5fold CV 
accuracy 

Leaveoneout 
CV accuracy 

SVM_HE  71.4286  62.5000 

6. Conclusions and future works 

In  search  of  good  classification  algorithm  of 
thermostable  proteins  is  an  important  issue.    In  this 
paper,      a  novel  classification  algorithm  of 
thermostable  proteins  combining  four  feature  scaling 
estimators,  Hurst  exponent  and  SVM  classifier  is
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proposed.  For evaluating the performance of this new 
algorithm, a thermostable proteins data set by using 5 
fold  and  Leaveoneout  CrossValidation  accuracy  is 
conducted.  Experimental  result  shows  that  this  new 
classification algorithm is feasible and useful. 

In future, we will consider look for some improving 
classification  algorithm  of  thermostable  proteins  by 
using Hurst exponent and other Classifiers. 
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Abstract 
 

Influenza A viruses are negative-strand RNA viruses. 
The gene of hemagglutinin (HA) protein in the virus 
genome is the major molecule that determines the range 
of hosts. Mutation of HA gene may bring infection cross 
species. In this paper, we studied physicochemical 
constraints during the variations of HA gene. Fuzzy 
measure and Choquet integral were used to estimate the 
combining effect of different physicochemical properties 
for single residue in HA protein that related to infective 
events. With this method, an HA sequence was quantified 
residue by residue and produced a series of values. 
Finally, the Hurst exponent was adopted to infer the 
constraints in the series. We found that the 
physicochemical constraints in HA sequences mainly 
falling into two classes of interdependence strength 
during gene variation, that was distinct from the diversity 
of clusters in the phylogenetic analysis. 
 
1. Introduction 
 

Influenza A viruses are negative-strand RNA viruses 
that infect a wide variety of animals in the nature. The 
infection of human may cause significant mortality and 
morbidity worldwide [1]. The gene of hemagglutinin 
(HA) protein in the virus genome is the major molecule 
that determining the range of hosts. The natural reservoir 
of influenza virus such as avian flu may emerge in strains 
infectious to human by mutation of HA gene [2,3]. Owing 
to that, it is important to understand the variation nature 
of HA gene. In the past, the researches in this field mainly 

have been focused on the phylogenetic reconstructions 
[4,5]. As shown in the explosive information on HA 
sequences, the reconstruction of a phylogenetic tree can 
provide abundant evolution information, and help in 
understanding the drifts of influenza hosts [6]. However, 
the feature and tendency about physicochemical 
properties of gene variations for specific host are never 
been discussed.  

Fuzzy measure theory considers a number of special 
classes of measurements, each of which is characterized 
by a special property. In the fuzzy measure theory, the 
conditions are precise, but the information about an 
element alone is insufficient to determine which special 
classes of measure should be used. The fuzzy measure 
estimates the possible interactions among the special 
classes of measurements [7]. Choquet integral is a tightly 
related concept with fuzzy measure. It assesses the 
integrated effect for some issue based on the concept of 
fuzzy measure [7,8]. The Hurst exponent (H) is a 
statistical measure used to classify time series [9]. For 
example, H=0.5 indicates a random series while H>0.5 
indicates a constrained reinforcing series. The larger the 
H value is, the stronger the constraint. In this paper, we 
studied the physicochemical constraints of HA protein of 
Influenza A viruses regarding to serotypes H1, H3, and 
H5. We concerned three types of physicochemical 
property for each residue that have acidity, Van der waal 
volume, and hydrophobicity [10]. Pearson’s correlation 
coefficient was used to quantify the dependence of 
physicochemical properties on infection hosts, human or 
avian. For each residue, there were three values of 
Pearson’s correlation coefficient corresponding to three 
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types of physicochemical properties. Based on the 
coefficients, Sugeno λ-measure [11] was adopted to 
calculate the fuzzy measure. Subsequently, the Choquet 
integral was applied to assess the integrated effect of 
physicochemical properties on infection hosts for each 
residue. A protein sequence implies a series of integral 
values. Finally, we used Hurst exponent to analyze the 
value series for exploring the integrated physicochemical 
constraints in the protein sequence. 
 
2. Methods 
 
2.1 Sequence data collection 
 

The sequence data of Influenza A viruses used in this 
research were obtained from public databases: Influenza 
Sequence Database (http://www.flu.lanl.gov). All HA 
nucleotide sequences of human and birds in this databases 
were downloaded on October 16, 2006. The HA 
sequences were extracted, of which less than 900 
nucleotides were considered as partial sequences and 
were excluded from this study. Identically coded 
sequences are considered as duplicates and only the 
earliest isolated strain among the duplicates was used as a 
representative sequence in the group. In total, we had 831 
H1 sequences, 3018 H3 sequences and 1376 H5 
sequences for our analysis. All sequences were isolated 
between 1963 and 2006 from locations around the globe. 
The exact isolation time (calendar year), host type and 
location can be found in the strain names. 

 
2.2. Residue coding 
 

The sequence alignment processes were implemented 
in ClustalX 3.14 [12] regarding to H1, H3, and H5. After 
alignment, the sequence length regarding to H1, H3, and 
H5 were 565, 567, and 583 amino acids respectively. The 
protein residues were coded according to its values of 
acidity, Van der waal volume, and hydrophobicity in the 
situation of single amino acid [10, 13], as shown in table 
1. For every physicochemical property, we had a matrix 
size of 831x565 for H1 group, 3018x567 for H3 group, 
and 1376x583 for H5 group. 

Table 1. The residue codes regarding to acidity, 
Van der waal volume, and hydrophobicity. 

Amino acid Acidity 
Van der 

waal 
volume 

Hydrophobicity 

Alanine 7.0 67. 0.616
Cysteine 8.4 86. 0.68
Aspartic acid 3.9 67. 0.028
Glutamic acid 4.1 109. 0.043
Phenylalanine 7.0 135. 1.
Glycine 7.0 48. 0.501
Histidine 6.0 118. 0.165
Isoleucine 7.0 124. 0.943

Lysine 10.5 135. 0.283
Leucine 7.0 124. 0.943
Methionine 7.0 124. 0.738
Asparagine 7.0 148. 0.236
Proline 7.0 90. 0.711
Glutamine 7.0 114. 0.251
Arginine 12.5 167. 0.
Serine 7.0 73. 0.359
Threonine 7.0 93. 0.45
Valine 7.0 105. 0.825
Tryptophan 10.5 163. 0.878
Tyrosine 7.0 141. 0.88

 
2.3. Inference of physicochemical constraints 
 

Choquet integral is defined to integrate functions with 
respect to the fuzzy measure [7]. It is very useful in 
assessment of the effect that results from the nonlinear 
interactions. The definitions of fuzzy measure and 
Choquet integral are as follows: 

 
Definition 1.  Let N be a finite set of criteria. A 

discrete fuzzy measure on N is a set function ]1,0[2: →Nv  
which satisfies the following axioms: 

(i)  0)( =φv , 1)( =Nv  (boundary conditions) 
(ii) BA ⊆ implies )()( BvAv ≤  (monotonicity) 

for NBA 2, ∈ . 
For each subset of criteria NS ⊆ , )(Sv  can be 

interpreted as the weight of the coalition S. 
The Sugeno λ-measure is a special case of fuzzy 

measures. It has the following definition. 
Definition 2.  Let { }1 2, , , nN X X X= " be a finite 

set and ( )1,λ ∈ − ∞ . A Sugeno λ-measure is a function ν 

from 2N to [0, 1] with properties:  
(i) ν(N) = 1.  
(ii) if , 2NA B ⊆ with A B φ∩ = then 

( ) ( ) ( ) ( ) ( )A B A B A Bν ν ν λν ν∪ = + + i . 

As a convention, the value of ν at a singleton set{ }iX  

is called a density and is denoted by { }iXν . In addition, 
we have that λ satisfies the property 

        ( ))(11
1 i

n

i
Xλνλ +Π=+

=
            (1) 

Tahani and Keller [14] as well as Wang and Klir [15] 
have showed that that once the densities are known, it is 
possible to use the previous polynomial to obtain the 
values of λ uniquely. 

 
Definition 3.  Let v  be a fuzzy measure on N. The 

discrete Choquet integral of function x: N→ R with 
respect to v  is defined by 
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[ ])()()( )1()(
1

)( +
=

−=∑ ii

n

i
iv AvAvxxC , where ( ‧ ) 

indicates a permutation on N such that 

)()2()1( nxxx ≤≤≤ " . Also 

{ })()()( ,, nii xxA "= , and φ=+ )1(nA . For 

instance, if 231 xxx ≤≤ , then rank 321 ,, xxx  from the 

smallest one to the largest one. The result is 1)1( xx = , 

3)2( xx = , 2)3( xx = . Finally, 
 

),,( 321 xxxCv  = { }[ ]),,(* 3211 xxxvx  + 

{ }[ ]3213 ,(*)( xxvxx −  + { }[ ])(*)( 232 xxx ν−  
                                                     (2) 

 
The discrete Choquet integral takes into account the 

interaction by means of the fuzzy measure v . If the 
criteria are independent, the fuzzy measure is additive. 
Then, the discrete Choquet integral coincides with the 
weighted arithmetic mean method. That is, )(xCv  = 

∑
=

n

i
ixiv

1
)( , nRx ∈ .  In this study, the correlation-based 

method proposed by Hsiang-Chuan Liu in 2006 [16,17] to 
construct the fuzzy measures in the discrete Choquet 
integral was used. 

The Hurst exponent occurs in several areas of applied 
mathematics, including fractals and chaos theories, long 
memory processes and spectral analysis. Hurst exponent 
estimation has been applied in areas ranging from 
biophysics to computer networking. Estimation of the 
Hurst exponent was originally developed in hydrology. 
However, the modern techniques for estimating the Hurst 
exponent come from fractal mathematics.  

Estimating the Hurst exponent for a data set provides 
a measure of whether the data is a pure random walk or 
has underlying trends. Another way to state this is that a 
random process with an underlying trend has some degree 
of autocorrelation. Furthermore, when the autocorrelation 
has a very long (or mathematically infinite) decay this 
kind of Gaussian process is sometimes referred to as a 
long memory process.  

The Hurst exponent (H) is a statistical measure used to 
classify time series. H=0.5 indicates a random series 
while H>0.5 indicates a trend reinforcing series. The 
larger the H value is, the stronger the trend. In this paper 
we investigate the use of the Hurst exponent to classify 
series of financial data representing different periods of 
time. Experiments with back propagation Neural 
Networks show that series with large Hurst exponent can 
be predicted more accurately than those with H value 

close to 0.50. Thus the Hurst exponent provides a 
measure for predictability.  

Three methods were used most often for the estimation 
of the Hurst exponent: the R/S method, the roughness–
length (R–L) method and variogram. The R/S method 
[18] is commonly perceived as the most suitable for the 
time series analysis on the stock market or an optimal 
volume of water reservoirs, because it presents the 
relationship between irregular (singular) rescaled ranges, 
signal value and their local statistical properties relative to 
the scale factor. In this study R/S method is used.  R/S 
method [19] is based on empirical observations by Hurst 
and estimates H are based on the R/S statistic. It indicates 
(asymptotically) second-order self-similarity. H is roughly 
estimated through the slope of the linear line in a log-log 
plot, depicting the R/S statistics over the number of points 
of the aggregated series. That is, given a time sequence of 
observations tw , define the series 

∑
=

−=
t

u
u wwtW

1
)(),( ττ , where ∑

=

=
τ

τ τ 1

1
t

tww .  

Define ),(min),(max)(
11

τττ
ττ

tWtWR
tt ==

−=  

and ( ) ⎟
⎠

⎞
⎜
⎝

⎛ −= ∑
=

τ

ττ
τ

1

21)(
t

t wwS . In plotting 

)(
)(log

τ
τ

S
R

against τlog , we expect to get a line whose 

slope determines the Hurst exponent. 
There is a 7-step to make hurst exponent analyze: 
Step 1.  With quantizing three properties each amino 

acid of each protein sequence, we have three time series 
for each protein sequence.  

Step 2.  For each property, normalize the data for each 
position which the same position of aligned protein 
sequences for affecting human and birds. That is, label 
elements in the sample by l and treat each position in 
aligned protein sequence as a random variable. Assume 
the size of the sample is k. For the element l, let i-th 
position of aligned protein sequences for property m be a 
random variable ml

iX ,  where 1≦l≦k, 1≦m≦3, and n is 
the length of aligned protein sequences. If 

{ } { }ml
il

ml
il

XX ,, minmax −  ≠0, then  

{ }
{ } { }ml

il

ml
il

ml
il

ml
iml

i XX

XX
Z ,,

,,
,

minmax

min

−

−
= . Otherwise, set 

0, =ml
iZ . 

Step 3.  Let lY be a random variable which is 1 if 
affecting the human and 0 otherwise for the element l. Let 
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)',,,( ,,2,1 mk
i

m
i

m
i

m
i XXXX "=  and 

)',,,( 21 kYYYY "= . For each m, compute corr( m
iX , 

Y) where “corr” is the Pearson correlation coefficient. For 
each m, define the weight m

iw  to be 

1 ( , )
2

m
icorr X Y+

for each i. That is, { }( )m m
i iv X w=  

for 1≦m≦3 and 1≦i≦n. 
Step 4.  For using Sugeno λ-measure, solve (1) for λ.  

Then, for each i 
compute { }1 2( , )i iv X X , { }1 3( , )i iv X X , { }2 3( , )i iv X X by 

Sugeno λ-measure. Note that { }1 2 3( , , ) 1i i iv X X X = . 

Step 5.  Combined the three properties to be one, 
compute the Choquet integral for each position by 
equation (2). Then we get one time series for each aligned 
protein sequence. 

Step 6.  Calculate Hurst exponent for each aligned 
protein sequence. 

Step 7.  Analyze the results. 
The above steps were calculated using Matlab 

package, except for Hurst exponent was obtained from the 
website: http://www.mathworks.com/matlabcentral/. 
 
3. Results 
 

We calculated the Hurst exponent regarding to H1, H3, 
and H5 to infer the physicochemical interdependency 
among the residues in the HA protein. The serotype H1 
are shown in Fig.1, there are 2 clusters in the frequency 
distributions of Hurst exponents for human strains and 
avian strains. The Hurst exponent is nearby 1 for one 
cluster, and nearby 0.5 for another cluster. That mean 
some variations are constrained strongly, and some 
variations are random-like. The tendency of H3 is shown 
in Fig.2 and similar to H1, but the Hurst exponents in the 
two clusters are closer and away from 1 and 0.5. The 
results about H5 are shown in Fig.3, the distribution 
pattern is different from H1 and H3 for avian strains. 
There are three clusters in the frequency distribution.  

The phylogenetic analysis is based on the mutation 
frequency between residues regarding homologous 
proteins. The evolution of quantitative property during the 
process of residue changes is ambiguous. In this study, we 
proposed a method based on the quantitative properties of 
residues regarding to infection issue of Influenza A 
viruses to estimate the constrain strength in the HA 
proteins.  The distribution of constrain strength are 
distinct from the diversity of clusters in the phylogenetic 
analysis. 
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Figure 1. The frequency distribution of H1 Hurst exponents 
for human strains and avian strains. 
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Figure 2. The frequency distribution of H3 Hurst exponents 
for human strains and avian strains. 
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Figure 3. The frequency distribution of H5 Hurst exponents 
for human strains and avian strains. 

 
4. Discussion 
 

The gene of HA protein in the virus genome is the 
major molecule that determining the range of hosts. 
Basically, the infection process is physicochemical 
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interaction between receptor of host and HA protein. For 
the sake of successful infection, the gene variations must 
follow certain rules under physicochemical base. Higher 
value of Hurst exponent implies more constraints or intra-
structure in the sequence properties. As to that, the gene 
variations are apt to destroy the intra-structure with high 
value of Hurst exponent. The variation tolerance is 
different for the same serotype of HA corresponding to 
the different clusters of Hurst exponents. 

The constraints in HA sequences mainly fall into two 
classes of Hurst strength during gene variations. That 
imply the variation tolerance of HA gene is diverse in the 
same serotype of HA. 
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Abstract: 
The well known fuzzy measures, λ-measure and 

P-measure, have only one formulaic solution, the former is not 
a closed form, and the later is not sensitive. An improved 
multivalent fuzzy measure with infinitely many solutions of 
closed form, called L-measure, is proposed by our previous 
work. In this paper, expend the L-measure for being more 
choice, and get an improved fuzzy measures, called “hth-order 
L-measure”, denoted as Lh-measure , and a new Choquet 
integral regression model based on this Lh-measure is also 
proposed. For evaluating the proposed regression models with 
different fuzzy measures, a real data experiment by using a 
5-fold cross-validation mean square error (MSE) is conducted. 
The performances of Choquet integral regression models with 
fuzzy measure based on λ-measure, P-measure, L-measure 
and Lh-measure, respectively, a ridge regression model, and a 
multiple linear regression model are compared. Experimental 
result shows that the Choquet integral regression models with 
Lh-measure based on γ-support outperforms others 
forecasting models. 

Keywords: 
λ-measure; P-measure; L-measure; Lh-measure; Choquet 

integral regression model 

1. Introduction 

When interactions among independent variables exist 
in forecasting problems, the performance of the multiple 
linear regression models is poor. The traditional improved 
methods exploited the ridge regression models [1]. In this 
paper, we suggest use the Choquet integral regression 
models based on some single or compounded fuzzy 
measures to improve this situation. The well known fuzzy 
measures, λ-measure and P-measure, have only one 
formulaic solution of fuzzy measure, the former is not a 
closed form, and the later is not sensitive. Recently, some 
Choquet integral regression models based on different 
fuzzy measures were used by our previous works to further 
improve this situation [2, 3, 4, 5, 6]. 

In our previous works [7, 8, 9], we found that the 
Choquet integral regression model with L-measure based 
on γ-support has the best performances. In this paper, we 
proposed a new fuzzy measure, Hth-order L-measure, 
denoted as Lh-measure, which has infinitely many solutions 
of fuzzy measure with closed form and apply it to form a 
Choquet integral regression model. 

This paper is organized as followings: Two well 
known fuzzy measure, λ-measure, P-measure and our 
L-measure are introduced in section 2; our new measure, 
Lh-measure, is introduced in section 3; the fuzzy support, 
γ-support are described in section 4; the Choquet integral 
regression model based on fuzzy measures are described in 
section 5; experiment and result are described in section 6; 
and final section is for conclusions and future works 

            

2. Fuzzy Measures 

The well known fuzzy measures, the λ-measure 
proposed by Sugeno in 1974, and P-measure proposed by 
Zadah in 1978, are concise introduced as follows. 

 

2.1. Fuzzy Measures [10, 11, 12] 

A fuzzy measure µ  on a finite set X is a set function 

[ ]: 2 0,1Xµ →  satisfying the following axioms: 

1) ( ) ( )0 , 1Xµ φ µ= =  (boundary conditions)       (1) 

2) ( ) ( )A B A Bµ µ⊆ ⇒ ≤  (monotonicity)          (2) 

2.2. Singleton Measures [4, 5, 6] 

A singleton measure of a fuzzy measure µ  on a 
finite set X is a function [ ]: 0,1s X →  satisfying: 



Proceedings of  the Eighth International Conference on Machine Learning and Cybernetics, Baoding, 12-15 July 2009 

3178 

( ) { }( ) ,s x x x X= ∈µ              (3) 

( )s x  is called the density of singleton x . 

2.3. λ-measure [11, 12] 

For given singleton measures s, a λ-measure, gλ , is a 
fuzzy measure on a finite set X, satisfying: 
1) , 2 , ,XA B A B A B X∈ = ≠∩ ∪φ  

( ) ( ) ( ) ( ) ( )g A B g A g B g A g B⇒ = + +∪λ λ λ λ λλ    (4) 

2) ( ) ( ) { }( )
1

1 1 0,
n

i i i
i

s x s x g xλλ λ
=

+ = + > =⎡ ⎤⎣ ⎦∏        (5) 

Note that once the singleton measure is known, we can 
obtain the values of λ uniquely by using the previous 
polynomial equation. In other words, λ-measure has a 
unique solution without closed form. 

2.4. P-measure [13] 

For given singleton measures s, a P-measure, Pg , is a 
fuzzy measure on a finite set X, satisfying: 

( ) ( ) { }( )2 max maxX
P Px A x A

A g A s x g x∀

∈ ∈
∈ ⇒ = =    (6) 

2.5. L-measure [6, 9] 

For given singleton measure s, a L-measure, Lg , is a 
fuzzy measure on a finite set X, X n= , satisfying: 

1) [ )0,L ∈ ∞                                   (7) 

2) { }( )( ) L
x X x X

s x g x
∈ ∈

=∑ ∑                         (8) 

3) , ( 1) 0A X n A A L∀ ⊂ − + − >  

( )
( )

( ) ( )
( )

( 1)
( ) max 1 max

1
x A

L x A x A

x X

A L s x
g A s x s x

n A A L s x
∈

∈ ∈

∈

−
⎡ ⎤⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦⎣ ⎦⎡ ⎤− + −⎣ ⎦

∑
∑

(9) 
[Note] 
i) L-measure has infinitely many solutions with closed 
form. 
ii) When L=0, the L-measure is just a P-measure with 
closed form. 

3. Hth-Order L-measure, Lh-measure 

3.1. Definition of Hth-Order L-measure, Lh-measure 

For given singleton measure s, a Hth-order L-measure, 

PLg , is a fuzzy measure on a finite set X, X n= , 
satisfying: 
1) [ )0, ,L P∈ ∞ ∈`                            (10) 

2) { }( )( ) PL
x X x X

s x g x
∈ ∈

=∑ ∑                       (11) 

3) , ( 1) 0A X n A A L∀ ⊂ − + − >  

( )( ) maxPL x A
g A s x

∈
= +⎡ ⎤⎣ ⎦  

( ) ( )

( ) ( ) ( )
( )

1

1

( 1) 1 max

1

h
h

x Ax A
h

h

x A x X A

A L s x s x

n A A L s x s x

∈∈

∈ ∈ −

⎧ ⎫ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎣ ⎦⎩ ⎭
⎛ ⎞⎧ ⎫⎡ ⎤− + − +⎡ ⎤⎜ ⎟⎨ ⎬⎣ ⎦⎣ ⎦ ⎜ ⎟⎩ ⎭⎝ ⎠

∑

∑ ∑
 

(12) 

3.2. Important Properties of hth-Order L-measure, 
Lh-measure 

1) Property 1 
For given singleton measure s, [ )0,L∀ ∈ ∞ , Hth-order 

L-measure is a fuzzy measure. 
[Proof] 

When L=0, Lh-measure is just the P-measure. 
When L>0; 

i) A X∀ ⊂ ,Since 

( )

( ) ( ) ( )
( )

1

1

( 1)

0 1

1

h

h

x A
h

h

x A x X A

A L s x

n A A L s x s x

∈

∈ ∈ −

⎧ ⎫⎪ ⎪⎡ ⎤− ⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭≤ ≤

⎛ ⎞⎧ ⎫⎪ ⎪⎜ ⎟⎡ ⎤ ⎡ ⎤− + − +⎨ ⎬⎣ ⎦⎣ ⎦⎜ ⎟⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠

∑

∑ ∑
 

(13) 
We get ( )0 1PLg A≤ ≤ , The boundary condition is 

satisfied. 
ii) ,A B X A B X n∀ ⊂ ⊂ ≤ ≤ =  

( ) ( )max max
x A x B

s x s x
∈ ∈

⎡ ⎤ ⎡ ⎤⇒ ≤⎣ ⎦ ⎣ ⎦                   (14) 

( ) ( )
1 1

0
h h

h h

x A x B

s x s x
∈ ∈

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤≤ ≤⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∑ ∑           (15) 

( )
( )

( )
( )

0
x X B x X A

s x s x
∈ − ∈ −

≤ ≤∑ ∑                  (16) 
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( )

( ) ( )
( )

1

1

0

h

h

x A
h

h

x A x X A

s x

s x s x

∈

∈ ∈ −

⎧ ⎫⎪ ⎪⎡ ⎤⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭⇒ ≤

⎛ ⎞⎧ ⎫⎪ ⎪⎜ ⎟⎡ ⎤ +⎨ ⎬⎣ ⎦⎜ ⎟⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠

∑

∑ ∑
 

( )

( ) ( )
( )

1

1

1

h

h

x B
h

h

x B x X B

s x

s x s x

∈

∈ ∈ −

⎧ ⎫⎪ ⎪⎡ ⎤⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭≤ ≤

⎛ ⎞⎧ ⎫⎪ ⎪⎜ ⎟⎡ ⎤ +⎨ ⎬⎣ ⎦⎜ ⎟⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠

∑

∑ ∑
      (17) 

( ) ( )1 1 ,A B n B n A− ≤ − − ≤ −           (18) 

( ) ( )1 1A L n B B L n A⎡ ⎤ ⎡ ⎤⇒ − − ≤ − −⎣ ⎦ ⎣ ⎦       (19) 

( )
( )

( )
( )

1 1
0 1

1 1

A L B L

n A A L n B B L

− −
⇒ ≤ ≤ ≤

⎡ ⎤ ⎡ ⎤− + − − + −⎣ ⎦ ⎣ ⎦
  (20) 

( )

( ) ( ) ( )
( )

1

1

( 1)

0

1

h

h

x A
h

h

x A x X A

A L s x

n A A L s x s x

∈

∈ ∈ −

⎧ ⎫⎪ ⎪⎡ ⎤− ⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭⇒ ≤

⎛ ⎞⎧ ⎫⎪ ⎪⎜ ⎟⎡ ⎤ ⎡ ⎤− + − +⎨ ⎬⎣ ⎦⎣ ⎦⎜ ⎟⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠

∑

∑ ∑
  

( ) ( )

( ) ( ) ( )
( )

1

1

1

1

1

h

h

x B
h

h

x B x X B

B L s x

n B B L s x s x

∈

∈ ∈ −

⎧ ⎫⎪ ⎪⎡ ⎤− ⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭≤ ≤

⎛ ⎞⎧ ⎫⎪ ⎪⎜ ⎟⎡ ⎤ ⎡ ⎤− + − +⎨ ⎬⎣ ⎦⎣ ⎦⎜ ⎟⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠

∑

∑ ∑
 

(21) 
If ( ) ( ) ( ) ( )max max P PL Lx A x B

s x s x g A g B
∈ ∈

⎡ ⎤ ⎡ ⎤= ⇒ ≤⎣ ⎦ ⎣ ⎦   (22) 

If ( ) ( )max max
x A x B

s x s x
∈ ∈

⎡ ⎤ ⎡ ⎤<⎣ ⎦ ⎣ ⎦                     (23) 

Let ( ) ( )max max , 0 1
x B x A

s x s x c c
∈ ∈

⎡ ⎤ ⎡ ⎤= + < ≤⎣ ⎦ ⎣ ⎦          (24) 

( ) ( )h hL Lg B g A−  

( ) ( ) ( )( )
( ) ( ) ( )

( )

1

1

1 1 max

1

h

h
x A

x B
h

h

x B x X B

B L s x s x c

c

n B B L s x s x

∈
∈

∈ ∈ −

⎧ ⎫⎪ ⎪ ⎡ ⎤⎡ ⎤ ⎡ ⎤− − +⎨ ⎬⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭= +
⎛ ⎞⎧ ⎫⎪ ⎪⎜ ⎟⎡ ⎤ ⎡ ⎤− + − +⎨ ⎬⎣ ⎦⎣ ⎦ ⎜ ⎟⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠

∑

∑ ∑
 

( ) ( ) ( )

( ) ( ) ( )
( )

1

1

1 1 max

1

h

h
x A

x A
h

h

x A x X A

A L s x s x

n A A L s x s x

∈
∈

∈ ∈ −

⎧ ⎫⎪ ⎪ ⎡ ⎤⎡ ⎤ ⎡ ⎤− −⎨ ⎬⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭−
⎛ ⎞⎧ ⎫⎪ ⎪⎜ ⎟⎡ ⎤ ⎡ ⎤− + − +⎨ ⎬⎣ ⎦⎣ ⎦ ⎜ ⎟⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠

∑

∑ ∑
 

( ) ( )

( ) ( ) ( )
( )

1

1

1

1

1

h

h

x B
h

h

x B x X B

B L s x

c

n B B L s x s x

∈

∈ ∈ −

⎡ ⎤
⎧ ⎫⎢ ⎥⎪ ⎪⎢ ⎥⎡ ⎤− ⎨ ⎬⎣ ⎦⎢ ⎥⎪ ⎪⎩ ⎭⎢ ⎥= −

⎛ ⎞⎢ ⎥⎧ ⎫⎜ ⎟⎪ ⎪⎢ ⎥⎡ ⎤ ⎡ ⎤− + − +⎨ ⎬⎜ ⎟⎣ ⎦⎢ ⎥⎣ ⎦ ⎪ ⎪⎜ ⎟⎩ ⎭⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑ ∑
 

( )
( ) ( )

( ) ( ) ( )
( )

1

1

1

1 max

1

h

h

x B
hx A

h

x B x X B

B s x

L s x

n B B L s x s x

∈
∈

∈ ∈ −

⎡
⎢ ⎧ ⎫
⎢ ⎪ ⎪⎡ ⎤− ⎨ ⎬⎢ ⎣ ⎦

⎪ ⎪⎢⎡ ⎤ ⎩ ⎭⎡ ⎤+ − ⎢⎢ ⎥⎣ ⎦ ⎛ ⎞⎢⎣ ⎦ ⎧ ⎫⎜ ⎟⎢ ⎪ ⎪⎡ ⎤ ⎡ ⎤⎜ ⎟− + − +⎢ ⎨ ⎬⎣ ⎦⎣ ⎦ ⎜ ⎟⎢ ⎪ ⎪⎜ ⎟⎩ ⎭⎢ ⎝ ⎠⎣

∑

∑ ∑
 

( ) ( )

( ) ( ) ( )
( )

1

1

1

1

h

h

x A
h

h

x A x X A

A s x

n A A L s x s x

∈

∈ ∈ −

⎤
⎥⎧ ⎫
⎥⎪ ⎪⎡ ⎤− ⎨ ⎬ ⎥⎣ ⎦

⎪ ⎪ ⎥⎩ ⎭− ⎥
⎛ ⎞ ⎥⎧ ⎫⎜ ⎟ ⎥⎪ ⎪⎡ ⎤ ⎡ ⎤⎜ ⎟− + − + ⎥⎨ ⎬⎣ ⎦⎣ ⎦ ⎜ ⎟ ⎥⎪ ⎪⎜ ⎟⎩ ⎭ ⎥⎝ ⎠ ⎦

∑

∑ ∑
 

(25) 
Since ( ) ( ) ( ) ( )1 1 1 1B n A A L A n B B L− − + − − − − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

( )( )1 0B A n= − − ≥                        (26) 

and  ( ) ( ) ( )
( )

1 1
h h

h h

x B x A x X A

s x s x s x
∈ ∈ ∈ −

⎛ ⎞⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎜ ⎟⎡ ⎤ ⎡ ⎤ +⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦⎜ ⎟⎜ ⎟⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠
∑ ∑ ∑    

( ) ( ) ( )
( )

1 1
h h

h h

x A x B x X B

s x s x s x
∈ ∈ ∈ −

⎛ ⎞⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎜ ⎟⎡ ⎤ ⎡ ⎤− +⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦⎜ ⎟⎜ ⎟⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠
∑ ∑ ∑    

( ) ( )
( )

( ) ( )
( )

1 1
0

h h

h h

x B x X A x A x X B

s x s x s x s x
∈ ∈ − ∈ ∈ −

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤= − ≥⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∑ ∑ ∑ ∑   

(27) 

( ) ( )1 1B n A A L⎡ ⎤⇒ − − + − ×⎣ ⎦  

( ) ( ) ( )
( )

1 1
h h

h h

x B x A x X A

s x s x s x
∈ ∈ ∈ −

⎛ ⎞⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎜ ⎟⎡ ⎤ ⎡ ⎤ +⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦⎜ ⎟⎜ ⎟⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠
∑ ∑ ∑       
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( ) ( )1 1A n B B L− − + −≥ ×⎡ ⎤⎣ ⎦  

( ) ( ) ( )
( )

1 1
h h

h h

x A x B x X B

s x s x s x
∈ ∈ ∈ −

⎛ ⎞⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎜ ⎟⎡ ⎤ ⎡ ⎤ +⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦⎜ ⎟⎜ ⎟⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠
∑ ∑ ∑       (28) 

( ) ( )

( ) ( ) ( )
( )

1

1

1

1

h

h

x B
h

h

x B x X B

B s x

n B B L s x s x

∈

∈ ∈ −

⎡
⎧ ⎫⎢ ⎪ ⎪⎡ ⎤− ⎨ ⎬⎢ ⎣ ⎦
⎪ ⎪⎢ ⎩ ⎭⇒ ⎢ ⎛ ⎞⎧ ⎫⎢ ⎪ ⎪⎜ ⎟⎡ ⎤ ⎡ ⎤− + − +⎨ ⎬⎢ ⎣ ⎦⎣ ⎦ ⎜ ⎟⎜ ⎟⎪ ⎪⎢ ⎩ ⎭⎝ ⎠⎣

∑

∑ ∑
 

( ) ( )

( ) ( ) ( )
( )

1

1

1

0

1

h

h

x A
h

h

x A x X A

A s x

n A A L s x s x

∈

∈ ∈ −

⎤
⎧ ⎫ ⎥⎪ ⎪⎡ ⎤− ⎨ ⎬ ⎥⎣ ⎦
⎪ ⎪ ⎥⎩ ⎭ ≥⎥⎛ ⎞⎧ ⎫ ⎥⎪ ⎪⎜ ⎟⎡ ⎤ ⎡ ⎤− + − +⎨ ⎬ ⎥⎣ ⎦⎣ ⎦ ⎜ ⎟⎜ ⎟⎪ ⎪ ⎥⎩ ⎭⎝ ⎠ ⎦

∑

∑ ∑
(29) 

Since

( ) ( )

( ) ( ) ( )
( )

1

1

1

1 0

1

h

h

x B
h

h

x B x X B

B L s x

n B B L s x s x

∈

∈ ∈ −

⎡ ⎤
⎧ ⎫⎢ ⎥⎪ ⎪⎡ ⎤⎢ ⎥− ⎨ ⎬⎣ ⎦⎢ ⎥⎪ ⎪⎩ ⎭− ≥⎢ ⎥

⎛ ⎞⎢ ⎥⎧ ⎫⎪ ⎪⎜ ⎟⎢ ⎥⎡ ⎤ ⎡ ⎤− + − +⎨ ⎬⎣ ⎦⎜ ⎟⎣ ⎦⎢ ⎥⎪ ⎪⎜ ⎟⎩ ⎭⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑ ∑
 

(30) 

and ( )1 max 0
x A

L s x
∈

⎡ ⎤⎡ ⎤− ≥⎣ ⎦⎢ ⎥⎣ ⎦
                      (31) 

We get ( ) ( ) 0P PL Lg B g A− ≥                     (32) 
The monotonicity condition is satisfied. 
2) Property 2 

When h=1, Hth-order L-measure is L-measure; that is, 
L-measure is the special case of Hth-order L-measure. 

4. γ –support [7, 8, 9] 

For given singleton measure s of a fuzzy measure µ on 
a finite set X, if ( ) 1

x X
s x

∈

=∑ , then s is called a fuzzy 

support measure of µ, or a fuzzy support of µ, or a support 
of µ. Two kinds of fuzzy supports are introduced as below. 

Let µ be a fuzzy measure on a finite set 
{ }1 2, ,..., nX x x x= , iy  be global response of subject i  

and ( )i jf x  be the evaluation of subject i  for singleton 

jx , satisfying: 

( )0 1, 1, 2,..., , 1, 2,...,i jf x i N j n< < = =     (33) 

If 

( ) ( )( )
( )( )

1

1
, 1, 2,...,

1

j
j n

k
k

r f x
x j n

r f x
=

+
= =

⎡ ⎤+⎣ ⎦∑
γ    (34) 

where ( )( ) , j

j

y x
j

y x

S
r f x

S S
=                        (35) 

2
2

1 1

1 1n N

y i i
i i

S y y
N N= =

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑                (36) 

( ) ( )
2

2

1 1

1 1
j

n N

x i j i j
i i

S f x f x
N N= =

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑         (37) 

( ) ( ),
1 1 1

1 1 1
j

n N N

y x i i i j i j
i i i

S y y f x f x
N N N= = =

⎛ ⎞⎡ ⎤
= − −⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑   (38) 

satisfying ( )0 1jx≤ ≤γ  and ( )
1

1
n

j
j

x
=

=∑γ         (39) 

then the function [ ]: 0,1X →γ  satisfying { }( ) ( )x x=µ γ , 
x X∀ ∈  is a fuzzy support of µ, called γ-support of µ. 

6. Choquet Integral Regression Models 

6.1. Choquet Integral [4, 12, 13] 

Let µ be a fuzzy measure on a finite set X. The 
Choquet integral of :if X R+→  with respect to µ for 
individual i  is denoted by 

( )( ) ( )( ) ( )( )1
1

, 1,2,...,
n

i
C i i ij j j

j

f d f x f x A i N−
=

⎡ ⎤= − =⎢ ⎥⎣ ⎦∑∫ µ µ  (40) 

where ( )( )0 0if x = , ( )( )i jf x  indicates that the 

indices have been permuted so that 

( )( ) ( )( ) ( )( )1 20 ...i i i nf x f x f x≤ ≤ ≤ ≤      (41) 

( ) ( ) ( ) ( ){ }1, ,...,j j j nA x x x+=               (42) 
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6.2. Choquet Integral Regression Models [4, 5, 6, 7, 8, 
9] 

Let 1 2, ,..., Ny y y  be global evaluations of N objects 

and ( ) ( ) ( )1 2, ,..., , 1, 2,...,j j N jf x f x f x j n= , be their 

evaluations of jx , where : , 1, 2,...,if X R i N+→ = . 
Let µ be a fuzzy measure, , R∈α β , 

( )2, ~ 0, , 1,2,...,i C i i iy f dg e e N i N= + + =∫ µα β σ   (43) 

( ) ( )2

, 1

ˆˆ , arg min
N

i C i
i

y f dg
=

⎡ ⎤= − −⎢ ⎥
⎣ ⎦
∑ ∫ µα β

α β α β       (44) 

then ˆˆˆ , 1,2,...,i iy f dg i N= + =∫ µα β  is called the 

Choquet integral regression equation of µ, where 
ˆ /yf ffS S=β                    (45) 

1 1

1 1ˆˆ
N N

i i
i i

y f dg
N N= =

= −∑ ∑∫ µα β         (46) 

1 1 1

1 1

1

N N N

i i i k
i i k

yf

y y f dg f dg
N N

S
N

µ µ∗ ∗

= = =

⎡ ⎤ ⎡ ⎤
− −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦=
−

∑ ∑ ∑∫ ∫
(47) 

2

1 1

1

1

N N

i k
i k

ff

f dg f dg
N

S
N

µ µ∗ ∗

= =

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦=
−

∑ ∑∫ ∫
       (48) 

 

7. Experiment and Result 

A real data set with 59 samples from a junior high 
school in Taiwan including the independent variables, 
examination scores of four courses, and the dependent 
variable, the score of the Basic Competence Test of junior 
high school  is applied to evaluate the performances of 
four Choquet integral regression models with P-measure, 
λ-measure, L-measure and Lh-measure based on γ-support 
respectively, a ridge regression model, and a multiple linear 
regression model by using 5-fold cross validation method to 
compute the mean square error (MSE)  of the dependent 
variable. The formulas of MSE is 

2

1

1 ˆ( )
N

i i
i

MSE y y
N =

= −∑           (49) 

For any fuzzy measure, µ-measures, once the fuzzy 
support of the µ-measure is given, all event measures of µ 
can be found, and then, the Choquet integral based on µ and 

the Choquet integral regression equation based on µ can 
also be found. 

The singleton measures, γ-support of the P-measure, 
λ-measure, L-measure and Lh-measure can be obtained by 
using the formulas (30). 

The experimental results of six forecasting models are 
listed in Table 1 and Table 2. We can find that the Choquet 
integral regression model with Lh-measure based on 
γ-support outperforms other forecasting regression models. 
 
TABLE 1.MSE OF CHOQUET INTEGRAL REGRESSON 
MODELS WITH PTH-ORDER L-MEASURE BASE ON 
γ-SUPPORT 

MSE of Choquet Integral Regression Models 
with Hth-order L-measure based on γ-support 

h 5-fold CV MSE h 5-fold CV MSE 

1 56.2711 10 53.5390 

2 54.7839 11 53.5371 

3 54.1228 12 53.5361 

4 53.8145 13 53.5357 

5 53.6690 14 53.5354 

6 53.5999 15 53.5353 

7 53.5668 16 53.5352 

8 53.5507 17 53.5352 

9 53.5429 18 53.5352 

 
 

TABLE 2. MSE OF REGRESSON MODEL 
Regression model 

measure 
5-fold CV MSE 

P 68.9878 

λ 57.5449 

L 56.2711 

Choquet 
Integral 

Regression 
model 

Min  Lh 53.5352 

Ridge regression 63.1263 

Multiple linear regression 69.7094 

8. Conclusions and Future Works 

In this paper, a novel fuzzy measure, second-order 
L-measure, Choquet integral regression models with fuzzy 
measure are proposed. An educational data experiment is 
conducted for comparing the performances of a ridge 
regression model, a multiple linear regression model, and 
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the proposed Choquet integral regression model with 
P-measure, λ-measure, L-measure and second-order 
L-measure based on γ-support. Experimental result shows 
that the Choquet integral regression models with the 
proposed second-order L-measure based on γ-support 
outperforms other forecasting models. 

In future, we will apply the proposed Choquet integral 
regression model with fuzzy measure based on γ-support to 
develop multiple classifier system. 
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Abstract: 
In this paper, for grouped data, three kinds of the 

Choquet integral regression models with fuzzy measures based 
on joint entropy, complexity and multiple mutual information  
is considered. The above three fuzzy measures are called, 
E-measure, C-measure and M-measure, respectively. For 
evaluating the Choquet integral regression models with these 
three information-based fuzzy measures, a real grouped data 
experiment by using a 5-fold cross validation accuracy is 
conducted. The performances of the Choquet integral 
regression models based on these three fuzzy measures, 
respectively, and the traditional multiple linear regression 
model are compared. Experimental result shows that the 
Choquet integral regression model based on our proposed 
M-measure has the best performance and it outperforms the 
Choquet integral regression model based on our previous 
proposed C-measure. 

Keywords: 
E-measure; C-measure; M-measure; Choquet integral; 

Choquet integral regression model 

1. Introduction 

When interactions among independent variables exist 
in forecasting problems, the well known multiple linear 
regression method is unable to overcome the undesirable 
phenomenon. In contrast, the Choquet integral takes into 
account the interactions among criteria [1]. In addition, 
there is a key issue unsolved in the application of fuzzy 
integral with the determination of density values to decide 
the fuzzy measures in the fusion process [2], [3]. In this 
paper, for grouped data, three kinds of fuzzy measures 
based on information theory are considered, the first one is 
the joint entropy-based fuzzy measure, called E-measure 
[4], [5], [6], the second one is the complexity-based fuzzy 
measure proposed by or previous study, called C-measure 
[7], and the third one is our proposed multiple mutual 

information-based fuzzy measure, called M-measure. 
For evaluating the Choquet integral regression models 

with these three information-based fuzzy measures, a real 
grouped data experiment by using a 5-fold cross validation 
accuracy is conducted. The performances of the Choquet 
integral regression models with these three 
information-based fuzzy measures, respectively, and the 
traditional multiple linear regression model are compared.  

This paper is organized as followings: three kinds of 
information-based fuzzy measures are introduced in section 
2, Choquet integral is described in section 3. Choquet 
integral regression models with respect to different fuzzy 
measures are described in section 4, Experiment and result 
are described in section 5 and final section is for 
conclusions and future works. 

2. Information-based fuzzy measures 

2.1. Fuzzy measure [2], [3] 

The Choquet integral takes into account the interaction 
by means of fuzzy measure, to compute the Choquet 
integral we need to compute a fuzzy measure first. The 
formal definition of fuzzy measure is given as below 

[Definition 1] A fuzzy measure µ  on a finite set X  

is a set function : 2 [0,1]xµ →  satisfying the following 
axioms: 
1) ( ) 0µ φ = , ( ) 1Xµ =  (boundary conditions)      (1) 

2) ( ) ( )A B A Bµ µ⊆ ⇒ ≤  (monotonicity)          (2) 
In this paper, entropy-based method and two of our 

proposed methods, complexity-based method and multiple 
mutual information- based method, are discussed. 
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2.2. Joint entropy-based fuzzy measure, E-measure 

2.2.1. Joint entropy [4] 

[Definition 2] Let 1 2, , ,..., mY X X X  be (m+1) random 
variables, the joint entropy of Y and 1 2, ,..., mX X X , 
denoted as ( )1 2, , ,..., mH Y X X X , is defined as follows 

( ) ( )
11 2 , ,..., 1, , ,..., log , ,...,

mm Y X X mH Y X X X E f y x x⎡ ⎤= − ⎣ ⎦    (3) 

[Property 1] 
( ) ( ) ( )1 1 2 1 20 , , , ... , , ,..., mH Y X H Y X X H Y X X X≤ ≤ ≤ ≤    (4) 

2.2.2. Joint entropy-based measure, E-measure [5], [6] 

[Definition 3] The joint entropy-based measure, 
E-measure, on a finite set { }1 2, , ..., nX X X X=  is a set 
function satisfying the following conditions 

1) , 1, 2, ..,iy i N=  are scores of dependent variable Y 
for examinee i , { }1 2, , ...,i i i i

nX X X X=  is the set of n 

independent variables for any individual :i
j jx X R+→ , 

1, 2,...,i N= , 1, 2,...,j n=  are scores of independent 
variable j  for individual i . 

2) ( ) ( ) ( ){ }1 2, , ...,i i i
nx x x  is a permutation of 

{ }1 2, , ...,i i i
nx x x  for examinee i , satisfying 

( ) ( ) ( )1 2 ...i i i
nx x x≤ ≤ ≤                (5) 

3) ( ) ( ) ( ) ( ){ }1, , ..., , 1, 2, ...,i i i i
j j j nA X X X j n+= =      (6) 

4) 
( )( ) ( )( )

( )
,

;

i
ji

j

H Y A
E A

H Y X
=  

         
( ) ( ) ( )( )

( )
1

1 2

, , ,...,

; , ,...,

i i i
j j n

n

H Y X X X

H Y X X X
+

=         (7) 

where ( )
i
jA X⊂   

( )( ) ( ) ( ) ( )( )1, , , ,...,i i i i
j j j nH Y A H Y X X X+=  

( ) ( ) ( )( ) ( ) ( ) ( )( )
1

1, , ,...,
log , , ,...,i i i

j j n

i i i
j j nY X X X

E f y x x x
+

+
⎡ ⎤

= − ⎢ ⎥
⎣ ⎦

 

( ), 0H Y φ =                (8) 
[Property 2] 

( )( ) ( )( ) ( )( )1 21 , , ... , 0i i i
nE Y A E Y A E Y A≥ ≥ ≥ ≥ ≥       (9) 

2.3. Complexity-based fuzzy measure, C-measure 

2.3.1. Complexity 

[Definition 4] Let 1 2, , ,..., mY X X X  be (m+1) random 
variables, the complexity of Y and 1 2, ,..., mX X X , denoted 
as ( )1 2, , ,..., mN Y X X X , is defined as the number of 

different patterns of the outcomes of ( )1 2, , ,..., mY X X X  
[Property 3] 

( ) ( ) ( ) ( )1 1 2 1 20 , , , , ... , , ,..., mN Y N Y X N Y X X N Y X X Xφ= ≤ ≤ ≤ ≤    (10) 

2.3.2. Complexity-based fuzzy measure, C-measure [7] 

[Definition 5] The complexity-based fuzzy measure, 
C-measure, on a finite set { }1 2, , ..., nX X X X=  is a set 

function [ ]: 2 0,1XC → satisfying the following conditions 
1) , 1, 2, ..,iy i N=  are scores of dependent variable Y 

for examinee i , { }1 2, , ...,i i i i
nX X X X=  is the set of n 

independent variables for any individual :i
j jx X R+→ , 

1, 2,...,i N= , 1, 2,...,j n=  are scores of independent 
variable j  for individual i . 

2) ( ) ( ) ( ){ }1 2, , ...,i i i
nx x x  is a permutation of 

{ }1 2, , ...,i i i
nx x x  for examinee i , satisfying 

( ) ( ) ( )1 2 ...i i i
nx x x≤ ≤ ≤                (11) 

3) ( ) ( ) ( ) ( ){ }1, , ..., , 1, 2, ...,i i i i
j j j nA X X X j n+= =     (12) 

4) 
( )( ) ( )( )

( )
,

;

i
ji

j

N Y A
C A

N Y X
=  

         
( ) ( ) ( )( )

( )
1

1 2

, , ,...,

; , ,...,

i i i
j j n

n

N Y X X X

N Y X X X
+

=        (13) 

[Property 4] 

( )( ) ( )( ) ( )( )1 21 ... 0i i i
nC A C A C A= ≥ ≥ ≥ ≥      (14) 

2.4. Multiple mutual information-based fuzzy measure, 
M-measure [8] 

2.4.1. Multiple mutual information 

[Definition 6] Let 1 2, , ,..., mY X X X  be (m+1) random 
variables, the multiple mutual information of Y and 

1 2, ,..., mX X X , denoted as ( )1 2, , ,..., mI Y X X X , is defined 
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as follows 
( )1 2, , , ..., mI Y X X X =  

( )
( )

( ) ( )
1

1

11 2

, ,..., 1

, ,..., 1
,..., 1, ,...,

, , ...,
, , ..., log

, ...,
m

m

mm

Y X X m

Y X X m
Y X X my x x x

f y x x
f y x x

f y f x x∑ ∑  (15) 

[Property 5] 
( ) ( ) ( )1 1 2 1 20 , , , ... , , ,..., mI Y X I Y X X I Y X X X≤ ≤ ≤ ≤     (16) 

2.4.2. M-measure 

[Definition 7] The M-measure on a finite set 
{ }1 2, , ..., nX X X X=  is a set function 

[ ]: 2 0,1XM → satisfying the following conditions 
1) , 1, 2, ..,iy i N=  are scores of dependent variable Y 

for examinee i , { }1 2, , ...,i i i i
nX X X X=  is the set of n 

independent variables for any individual :i
j jx X R+→ , 

1, 2,...,i N= , 1,2,...,j n=  are scores of independent 
variable j  for individual i . 

2) ( ) ( ) ( ){ }1 2, , ...,i i i
nx x x  is a permutation of 

{ }1 2, , ...,i i i
nx x x  for examinee i , satisfying 

( ) ( ) ( )1 2 ...i i i
nx x x≤ ≤ ≤                (17) 

3) ( ) ( ) ( ) ( ){ }1, , ..., , 1, 2, ...,i i i i
j j j nA X X X j n+= =     (18) 

4) 
( )( ) ( )( )

( )
,

;

i
ji

j

I Y A
M A

I Y X
=  

         
( ) ( ) ( )( )

( )
1

1 2

, , ,...,

; , ,...,

i i i
j j n

n

I Y X X X

I Y X X X
+

=        (19) 

where ( ), 0I Y φ = , ( )
i
jA X⊂  

[Property 6] 

( )( ) ( )( ) ( )( )1 21 ... 0i i i
nM A M A M A= ≥ ≥ ≥ ≥      (20) 

3. Choquet integral [3], [4] 

[Definition 8] Let µ  be a fuzzy measure on a finite 
set X. The Choquet integral of :if X R+→  with respect 
to µ  for individual i  is denoted by 

( )( ) ( )( ) ( )( )1
1

, 1, 2,...,
n

i i ij jC
j

i
jf d f x f x A i Nµ µ−

=

= − =⎡ ⎤
⎣ ⎦∑∫  (21) 

where ( )( )0 0if x = , ( )( )i jf x  indicates that the indices 

have been permuted so that 

( )( ) ( )( ) ( )( )1 20 ...i i i nf x f x f x≤ ≤ ≤ ≤ , 

( ) ( ) ( ) ( ){ }1, ,...,j j j nA x x x+=             (22) 

4. Choquet integral regression models [8] 

[Definition 9] Let 1 2, ,..., Ny y y  be global evaluations 

of N objects (or by N individuals), and ( ) ( )1 2, ,...,j jf x f x  

( ) , 1, 2,...,N jf x j n= , be their evaluations of jx , where 

: , 1, 2,...,if X R i N+→ = . Let µ  be a fuzzy measure, 
, Rα β ∈  

i i ic
y f dg eµα β= + +∫ , ( )20, , 1, 2,...,ie N i Nσ =∼   (23) 

( ) ( )2

, 1

ˆˆ , arg min
N

i ic
i

y f dgµα β
α β α β

=

⎡ ⎤
= − −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∫      (24) 

then ˆˆˆ , 1,2,...,i iy f dg i Nµα β= + =∫  is called the optimal 

Choquet integral regression equation of µ , where 
ˆ /yf ffS Sβ =                    (25) 

1 1

1 1ˆˆ
N N

i i
i i

y f dg
N N µα β

= =

= −∑ ∑∫            (26) 

1 1 1

1 1

1

N N N

i i i k
i i k

yf

y y f dg f dg
N N

S
N

µ µ∗ ∗

= = =

⎡ ⎤⎡ ⎤
− −⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦=
−

∑ ∑ ∑∫ ∫
     (27) 

2

1 1

1

1

N N

i k
i k

ff

f dg f dg
N

S
N

µ µ∗ ∗

= =

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦=
−

∑ ∑∫ ∫
       (28) 

5. Experiment and result 

A real raw data set comes from a class with 59 
students in a junior high school in Taiwan, and each student 
took 3 courses (namely physics and chemistry, biology, and 
geoscience) for natural science. The credit hours for these 
three courses are 16, 4, and 4, respectively. The maximum 
score for each course is 100 points. Later, all students took 
a Basic Competence Test of natural science for all junior 
high school students. The maximum and minimum scores 
of the Basic Competence Test are 60 and 1. To simplify the 
notations, the scores of physics and chemistry, biology, and 
geoscience are denoted by C1, C2, and C3, while the scores 
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of natural science in the Basic Competence Test is denoted 
by BCT. The detailed information is depicted in TA BLE 2. 

For computing each joint entropy and mutual 
information, we need to consider the distributions and the 
joint probability about the data, and we need to decide the 
number of level to be used to classify the raw data into the 
level of the score for each criterion. In our study, the sample 
size n is 59, according to the Sturge’s formula [9] 

( ) ( )10 101 3.3log 1 3.3log 59m n= + = +       (29) 

We can obtain the possible candidates m=6 or 7, in this 
study, set m=3, 4, 5, 6, 7, 8. 

Then, to transform the scores of the raw data of the 
courses into the level of the scores for each item when m=3, 
4, 5, 6, 7, 8, for example, the transformed data for m=6 is 
listed in TABLE 3. 

And then, we can compute the above three kinds of 
fuzzy measures, E-measure; C-measure; M-measure, and 
their Choquet integrals, furthermore, we can obtain all of 
the estimated overall performance values for m=3, 4, 5, 6, 7, 
8. 

Next, transform the results into the level of the scores 
for each m=3, 4, 5, 6, 7, 8. For example, the transformed 
data of four forecasting regression models for m=6 is listed 
in TABLE 4. 

Finally, by using 5-fold cross validation method to 
compute the accuracy of BCT for four methods, the results 
are listed in TABLE 1. 

From TABLE 1, we know that all of the three Choquet 
integral methods are better than the traditional regression 
model, Our proposed the Choquet integral methods based 
on M-measure is better than other two methods, so our 
proposed Choquet integral methods based on M-measure 
has the best performance. 

 
TABLE 1 The accuracy of each method for m=3, 4, 5, 6, 7, 8 

m Regression 

Choquet 
integral 

with 
E-measure 

Choquet 
integral 

with 
C-measure 

Choquet 
integral 

with 
M-measure

3 0.5254 0.6102 0.5763 0.6102 
4 0.4576 0.4915 0.4237 0.4915 
5 0.3051 0.3729 0.3390 0.3729 
6 0.3051 0.3559 0.3898 0.3729 
7 0.2542 0.3220 0.3390 0.3390 
8 0.2542 0.2712 0.2881 0.2881 

 

6. Conclusions and future works 

When the sub-tests of a composite test are with 

interaction, the performance of the traditional additive scale 
method is poor. Non-additive fuzzy measures and fuzzy 
integral can be applied to improve this situation. In this 
study, a real data set from a junior high school including the 
independent variables, test scores of three courses with 
interaction, and the dependent variable, junior high school 
graduates’ scores of the Basic Competence Test (BCT) are 
applied to evaluate the performances of the Choquet 
integral regression model with three fuzzy measures, 
E-measure, C-measure, M-measure, and traditional multiple 
linear regression model. Experimental result shows that 
Choquet integral regression model with M-measure has the 
best performance, the rest in order are Choquet integral 
regression model with C–measure, Choquet integral 
regression model with E-measure and the multiple linear 
regression model. 

The Choquet integral regression model with  
M-measure can be used to not only the interval variables 
but also the nominal variables. In future we will apply the 
proposed Choquet integral regression model based on the 
new measure to develop multiple classifier system. 
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TABLE 2  Raw data of the scores of 59 students 

Student C1 C2 C3 BCT Student C1 C2 C3 BCT Student C1 C2 C3 BCT
1 77 75 79 31 21 53 68 74 11 41 74 86 87 44 
2 71 72 78 26 22 56 63 69 21 42 78 83 81 50 
3 78 86 86 33 23 70 80 78 31 43 47 58 66 15 
4 58 64 68 32 24 51 74 82 49 44 51 60 63 18 
5 48 59 65 16 25 61 66 72 33 45 60 65 75 23 
6 68 74 77 28 26 67 70 80 35 46 68 68 80 26 
7 62 72 84 47 27 59 75 80 27 47 52 60 70 20 
8 51 53 65 9 28 53 56 70 22 48 57 65 75 24 
9 62 64 76 36 29 56 56 65 6 49 70 66 70 13 

10 63 70 81 41 30 52 57 67 15 50 53 68 74 30 
11 66 68 75 25 31 74 70 80 35 51 68 68 78 35 
12 66 72 80 23 32 56 61 75 22 52 57 60 68 23 
13 75 75 85 39 33 62 68 72 29 53 61 62 70 25 
14 74 63 69 12 34 86 80 82 35 54 59 70 80 37 
15 68 78 85 27 35 63 78 88 31 55 59 62 70 29 
16 71 74 80 26 36 56 66 76 21 56 52 64 76 27 
17 49 60 69 13 37 77 74 80 42 57 68 70 80 33 
18 73 78 84 39 38 73 78 84 24 58 71 76 74 38 
19 68 70 74 40 39 63 60 68 17 59 72 66 78 19 
20 54 56 62 7 40 53 68 80 31      

C1 : physics and chemistry 
C2 : biology 
C3 : geoscience 
BCT : Basic Competence Test 

 
TABLE 3  Transformed data of the scores of 59 students for m=6 

Student C1 C2 C3 BCT Student C1 C2 C3 BCT Student C1 C2 C3 BCT
1 5 4 4 4 21 1 3 3 1 41 5 6 6 6 
2 4 4 4 3 22 2 2 2 3 42 5 6 5 6 
3 5 6 6 4 23 4 5 4 4 43 1 1 1 2 
4 2 2 2 4 24 1 4 5 6 44 1 2 1 2 
5 1 2 1 2 25 3 3 3 4 45 2 3 3 3 
6 4 4 4 3 26 4 4 5 4 46 4 3 5 3 
7 3 4 6 6 27 2 4 5 3 47 1 2 2 2 
8 1 1 1 1 28 1 1 2 3 48 2 3 3 3 
9 3 2 4 5 29 2 1 1 1 49 4 3 2 1 

10 3 4 5 5 30 1 1 2 2 50 1 3 3 4 
11 3 3 3 3 31 5 4 5 4 51 4 3 4 4 
12 3 4 5 3 32 2 2 3 3 52 2 2 2 3 
13 5 4 6 5 33 3 3 3 4 53 3 2 2 3 
14 5 2 2 1 34 6 5 5 4 54 2 4 5 5 
15 4 5 6 3 35 3 5 6 4 55 2 2 2 4 
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16 4 4 5 3 36 2 3 4 3 56 1 2 4 3 
17 1 2 2 1 37 5 4 5 5 57 4 4 5 4 
18 4 5 6 5 38 4 5 6 3 58 4 5 3 5 
19 4 4 3 5 39 3 2 2 2 59 4 3 4 2 
20 2 1 1 1 40 1 3 5 4      

C1 : physics and chemistry 
C2 : biology 
C3 : geoscience 
BCT : Basic Competence Test 
 
 

TABLE 4  Transformed data of the estimated scores by each method for m=6 
Student R E C M BCT Student R E C M BCT 

1 4 4 4 4 4 31 4 4 5 5 4 
2 4 4 4 4 3 32 3 3 3 3 3 
3 5 5 5 5 4 33 3 3 3 3 4 
4 3 2 3 3 4 34 5 5 5 5 4 
5 2 2 2 2 2 35 5 4 4 4 4 
6 4 4 4 4 3 36 4 3 3 3 3 
7 4 4 4 4 6 37 4 4 4 4 5 
8 2 2 2 2 1 38 5 5 5 5 3 
9 3 3 3 3 5 39 3 3 3 3 2 

10 4 4 4 4 5 40 4 3 3 3 4 
11 3 3 3 3 3 41 5 5 5 5 6 
12 4 4 4 4 3 42 5 5 5 5 6 
13 4 5 5 5 5 43 2 2 2 2 2 
14 3 3 3 3 1 44 2 2 2 2 2 
15 5 5 4 5 3 45 3 3 3 3 3 
16 4 4 4 4 3 46 4 4 4 4 3 
17 3 2 2 2 1 47 3 2 2 2 2 
18 5 5 5 5 5 48 3 3 3 3 3 
19 4 4 4 4 5 49 3 3 3 3 1 
20 2 2 2 2 1 50 3 3 3 3 4 
21 3 3 3 3 1 51 3 4 4 4 4 
22 3 2 3 3 3 52 3 2 3 3 3 
23 4 4 4 4 4 53 2 3 3 3 3 
24 3 4 3 3 6 54 4 4 4 4 5 
25 3 3 3 3 4 55 2 2 3 2 4 
26 4 4 4 4 4 56 3 3 3 3 3 
27 4 4 3 4 3 57 4 4 4 4 4 
28 2 2 2 2 3 58 4 4 4 4 5 
29 2 2 2 2 1 59 4 4 4 4 2 
30 2 2 2 2 2       

R : estimated transformed -scores of BCT by using the regression model                                           
E : estimated transformed -scores of BCT by using the Choquet integral with E-measure 
C : estimated transformed -scores of BCT by using the Choquet integral with C-measure                
M : estimated transformed -scores of BCT by using the Choquet integral with M-measure 
BCT : classified scores of the Basic Competence Test 
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Abstract
It is attractive and worthy to estimate the ambigu-

ity of one existing class structure such that one could
give suggestions to domain experts when and how to
reorganize the original class structure. In this paper
Class Structure Ambiguity (CSA) was proposed to es-
timate the quality of one class structure. To inspect
whether the CSA did tell the quality of class structure
or not, the Pearsons correlation between classification
accuracies achieved by a linear SVM classifier and the
values of CSA were evaluated according to two types of
datasets, one generated randomly and another selected
from the LIBSVM. The experimental results showed
that the CSA did reveal the degree of the ambiguities
among classes. To our knowledge, we were the first to
discuss the problem of class structure ambiguity.

Keywords:
classification, class structure, class ambiguity.

1 Introduction

Classification was well known as a supervised
problem[2, 12, 17, 20]. The class structures usually
were determined in the beginning by some domain experts
manually or automatically [5, 6, 7, 13, 14, 15, 19, 21, 22]
and it was difficult to challenge these experts to verify
whether that structures were well designed or not. There-
fore, it is attractive and worthy to estimate the ambiguity of
one existing class structure, especially when that structure
had been existed for a long time, or when the characteristics
of its contents become diverse as more and more instances
put into it. That is, it is important to know how to evaluate
the ambiguity of class structure such that one could give
suggestions to those domain experts when and how to
reorganize the original class structure.

The classifiers achieving the highest classification accu-
racy for some well known datasets available in the public

domain were regularly proposed and published in the pa-
pers. However, focusing on searching such classifier from
a lot of classifiers was somewhat another kind of over-
fitting problem that found one specific classifier fitting to
that datasets, even with k-fold cross-validation[2]. On the
other hand, the problem of class ambiguity becomes sig-
nificant for the class structures designed only with a few
number of classes in the beginning such that the coming in-
stances might be put to a unsuitable classes for storage by
the distributors or automatic classification software at that
moment. Although there were studies for discussing the
quality of clustering approaches [8, 23], it was seldom to
discuss the class ambiguous problem that how to evaluate
the degree of class ambiguity between two classes, and how
to determine the quality of one existing class structure. In
our previous study [18], the estimation unit using the stan-
dard derivation of the distances from every instances in one
class to the centroid of that class were coarse and it was
only for estimating the ambiguity between two classes, but
not for evaluating the ambiguities for the whole class struc-
ture.

In this paper an approach was proposed to estimate the
quality of one class structure according to the value of Class
Structure Ambiguity (CSA). Generally speaking, the less
ambiguity of one class structure was, the higher accuracy
one classifier could achieve. In other words, the value of
CSA might suppose to be high if the value of classifica-
tion accuracy was low. To inspect whether the CSA did
reveal the ambiguity of structure class or not, it was ex-
pected that the degree of class ambiguity increased as the
value of classification accuracy decreased. To show that ex-
pectation in this paper, the Pearsons correlation [1, 3] be-
tween classification accuracies and the values of CSA was
computed according to two types of datasets, one generated
randomly and another selected from the LIBSVM [4]. The
accuracies achieved by linear SVM classifier derived from
the LIBSVM [4]. Note that linear SVM was well-known
and achieved high accuracy [8, 10, 11].



The experimental results showed that the values of Pear-
sons correlation as described above were above −0.9. This
observation told that the correlation was a negative linear
relationship between accuracy and CSA. That is, the higher
classification accuracies were, the lower the values of CSA
were. In other words, the CSA proposed in this paper did re-
veal the degree of class structure ambiguity. To our knowl-
edge, we were the first to discuss the problem of class struc-
ture ambiguity.

The remainder of this paper is organized as follows. Sec-
tion 2 gives the notations and the computation of CSA.
Section 3 gives experimental results. Section 4 gives con-
clusions and discussions.

2 Methods

It was expectable that there was a negative linear rela-
tionship between the classification accuracy and the class
structure ambiguity. In other words, the higher classifica-
tion accuracy was, the less class structure ambiguity was.
In this paper the ambiguity of one class structure was mea-
sured according to the summation of the class ambiguities
of all pairs of any two classes within that class structure. To
evaluate whether the measurement of class structure ambi-
guity works or not, the Pearsons correlation [1, 3] was com-
puted between the classification accuracies achieved by lin-
ear SVM classifier from LIBSVM[4] and the values of class
structure ambiguity according to different datasets. Note
that linear SVM classifier was well-known for achieving
high classification accuracy[2]. In the following the nota-
tions used in this paper was given in section 2.1, and then
described the computation of class structure ambiguity in
section 2.2.

2.1 Notations

Let {C1, C2, . . . , Cc} be an actual partition of a data set
Y as

Y =


y1,1, y1,2, . . . , y1,n1 ,
y2,1, y2,2, . . . , y2,n2 ,
. . . ,
yc,1, yc,2, . . . , yc,nc

.

 . (1)

where yi,l ∈ Rm, i = 1, 2, . . . , c; l = 1, 2, . . . , ni;
n =

∑c
i=1 ni; {yi,1, yi,2, . . . , yi,ni} ∈ Ci; R is for real

number; m is the dimension in the vector model; c is the
number of classes. Let the centroid(mean) of Ci be as
yi = 1

ni

∑ni

l=1 yi,l and the standard deviation of Ci be Si

as following:

Si =

√√√√ 1
ni

ni∑
l=1

(yi,l − yi)T (yi,l − yi). (2)

Let di,m(di,M ) be the minimum(maximum) of the dis-
tances from all instances in Ci to the centroid yi as shown
in equation 3(4)

di,m = arg minl=1,2,...,ni
d(yi,l, yi). (3)

di,M = arg maxl=1,2,...,ni
d(yi,l, yi). (4)

Let Pi(yj,l) present the ambiguous degree of the lth
instance yj,l of class Cj relative to class Ci. The value
of Pi(yj,l) was defined as equation 5 where Di =
max{5Si, di,M}. The Di was used to exclude the instances
yj,l in class Cj that were far away from the centroid yi of
class Ci. Note that 0 ≤ Pi(yj,l) ≤ 1.

Pi(yj,l) =


0 if d(yj,l, yi) > Di√

Di−d(yj,l,yi)
Di−di,m

if di,m ≤ d(yj,l, yi) ≤ Di

1 if d(yj,l, yi) < di,m

(5)
The Ui(yj,l), as equation 6, was used to filter out the

instances in class Cj that were closer to the centroid of class
Ci than that of class Cj .

Ui(yj,l) =
{

1 d(yj,l, yi) ≤ d(yj,l, yj)
0 d(yj,l, yi) > d(yj,l, yj)

(6)

2.2 Class Structure Ambiguity (CSA)

To provide a measure how ambiguous one class (Cj)
relative to another class (Ci) is, the Ambiguity Ratio
AR(Ci/Cj) of class Cj relative to class Ci is defined as
follows:

AR(Ci/Cj) =
CA(Ci/Cj)
CA(Cj/Cj)

. (7)

where CA(Ci/Cj) =
∑nj

l=1
Ui(yj,l)∗Pi(yj,l)

nj
. Intuitively, the

CA(Ci/Cj) provide the ambiguous degree of class Cj to
class Ci. That is, the more instances in class Cj closer to
the centroid of class Ci than that of class Cj are, the more
ambiguous of class Cj to class Ci is. Note that the relation
of CA is not symmetric[16].

The Class Ambiguity CA(Ci), as equation 8, was to
summing up all the ambiguities of the neighbors of class
Ci relative to itself while with the weighting proportional to
the ratio of the number of instances nj over that of the other
instances not in class Ci.

CA(Ci) =
c∑

i 6=j=1

nj

n− ni
∗AR(Ci/Cj). (8)

To have an overall estimation of the ambiguities of class
structure Ψ among classes, the Class Structure Ambiguity
CSA(Ψ) sums up the values of CA(Ci), 1 ≤ i ≤ c, with



the weighting as the ratio of ni over n. The definition of
CSA(Ψ) was given as following:

CSA(Ψ) =
c∑

i=1

ni

n
CA(Ci) (9)

.

3 Experimental Results

It is hard to have an objective point to tell whether the
quality of class structure is good or not because even do-
main experts might have different estimations of the quality
of class structure. Hence, the assumption was made in this
paper that the higher classification accuracy one excellent
classifier could achieve, the lower the ambiguous degree of
class structure was.

To estimate the effectiveness of the class structure ambi-
guity (CSA) proposed in this paper, the Pearsons correlation
[1, 3] between the values of classification accuracy achieved
by linear SVM classifier derived from the LIBSVM [4] and
the values of CSA was computed. Pearson’s Correlation
Coefficient can take on the values from -1.0 to 1.0. Where
-1.0 is a perfect negative (inverse) correlation, 0.0 is no cor-
relation, and 1.0 is a perfect positive correlation [1]. Note
that the SVM classifier was known as an excellent classifier
with proper training parameters [8, 10, 11].

There were two types of resources for experiments in this
paper. One type of resources consisted of random-generated
datasets and another consisted of the datasets selected from
the LIBSVM [4]. The details of experimental results were
given in Section 3.1 and Section 3.2, respectively.

3.1 Resources From Randomly Genera-
tion

First of all, to verify the probability of the above assump-
tion, there were datasets generated in terms of different de-
gree of class ambiguity. Each of these datasets contained
only two classes with randomly generated instances as 2-
dimension vectors with normal distribution[3] in each di-
mension, and the centroids of that two classes were M dis-
tance apart in order to simulate the degree of the ambiguity
via the M . That is, the less value of the M was, the higher
degree of class ambiguity was.

There were n instances generated randomly for two
classes in 2-dimension vector space, X-axis and Y -axis, as
normal distribution where S1 = S2 = 1, and the centroids
of C1 and C2 were M distance apart. Intuitively, the degree
of class ambiguity between C1 and C2 increased when the
value of M decreased. As shown in Fig.1 and Fig.2, there
were instance distributions for M = 3 and M = 5 and the
instances were marked as ”∗” for C1 or ”+” for C1, respec-
tively. It was observable that the degree of class ambiguity

Figure 1. An example for the distribution of
C1(∗) and C2(+) when M = 5.

when M = 3 as in Fig.2 was higher than that when M = 5
as in Fig.1.

For a given constant M , there were 10 datasets generated
in which each class contained 100 instances (n = 100). The
value of accuracy and the value of CSA were based on the
average of these 10 datasets. As shown in Table 1, the value
of Pearson’s Correlation Coefficient were about −0.99 ac-
cording to the values of accuracy and that of CSA while the
value of M ranged from 1 to 6 with an increasing step as
0.25. This result told that there was almost a perfect nega-
tive linear relationship between the values of accuracy and
that of CSA when c = 2 and m = 2, as shown in Fig. 3.
According to the previous assumption that the higher classi-
fication accuracy one excellent classifier could achieve, the
lower the ambiguous degree of class structure was, the value
of CSA proposed in this paper did coincide with the degree
of the ambiguity of class structure. Note that the accuracy
was achieved by inside-testing that used the same dataset
for training and testing.

3.2 Resources from the LIBSVM

The statistics of the resources selected from the LIB-
SVM [4] were shown in Table 2. The resources were se-
lected if both the training and testing set were available and
the number of features under 10000 (m < 10000) due to
the limitation of memory size of our PCs using MATLAB
[9] for computing the values of CSA. The scatter diagram
of accuracy and CSA was shown in Fig.4 and the value
of Pearson’s Correlation Coefficient was −0.47 with all re-
sources. However, as shown in Fig.5, the value changed to



Figure 2. An example for the distribution of
C1(∗) and C2(+) when M = 3.

Table 1. The statistics of Accuracy and CSA
with random-generated Resources.

Figure 3. The scatter diagram of Accuracy
and CSA with random-generated resources.

−0.78 if the values from two datasets, named as ”vowel”
and ”letter”, were excluded from the evaluation of Pear-
son’s Correlation Coefficient. Generally speaking, the CSA
could reveal the degree of class ambiguity according to the
real datasets from the LIBSVM. Note that the range of the
number of classes c was from 2 to 26 and that of the dimen-
sion m was from 4 to 780 with resources from the LIBSVM
while it was fixed as c = 2 and m = 2 with resources ran-
domly gererated in Section 3.1.

According to above experimental results, the effective-
ness of Class Structure Ambiguity (CSA) with real-life
datasets seemed not as significant as that with datasets gen-
erated randomly in Section 3.1. It was because the sizes of
training and testing instances seemed too small to have a ro-
bust estimation, hence, the distribution of the instances for
these datasets were quite sparse, especially when the dimen-
sion was high. Considering the dataset ”vowel”, for exam-
ple, the number c of classes is 11 and the dimension m is 10
while the dataset ”vowel” contained only 528 instances for
training and 462 instance for testing. On the other hand, the
dataset ”letter”, c = 26 and m = 16, contained 15, 000 in-
stances for training and 5000 ones for testing while achiev-
ing the value of CSA as small as 0.078419 but the value
of accuracy as low as 69.88%, which was supposed to be
higher than that.

4. Conclusions and Discussions

In this paper Class Structure Ambiguity(CSA) was pro-
posed and evaluated by inspecting the Pearsons correlation
between classification accuracy achieved by linear SVM



Table 2. The statistics of the resources from
the LIBSVM[4].

Figure 4. The scatter diagram of Accuracy
and CSA for LIBSVM datasets.

Figure 5. The scatter diagram of Accuracy
and CSA for LIBSVM datasets excluding
”vowel” and ”letter”.

and the values of CSA according to experiments with two
types of datasets as randomly-generated and selected from
LIBSVM[4]. The experimental results showed that the cor-
relations described above were a negative linear relationship
between accuracy and CSA with both of two types datasets.
That is, the higher classification accuracies were, the lower
the values of CSA were. The observations told that the eval-
uation of CSA proposed in this paper did reveal the ambi-
guities among classes. To our knowledge, we are the first
to address the problem of class ambiguity for classification
problems although there were studies to discuss the quality
(purity) of clusters [23].

There are still many works for further study. First of all,
it is too optimistic to assume that the distribution of the in-
stances in one class in high dimension vector space is as
normal distribution. Indeed, it needs a lot of cost to have
instances with class-label from the real world. Therefore,
the distribution of instances for one class in high dimension
could be very sparse and should not suppose to be normal
distribution. On the other hand, how to decide the suitable
number of instances to have the statistic as normal distribu-
tion for a given m dimension is hard to predict. Secondly,
the classifier used in this paper was linear SVM. Therefore,
what the measures should be with different classifiers is un-
known. Thirdly, the class structure ambiguity discussed in
this paper was only based on the relationship between two
classes. It might be more reasonable to take all the instances
of the neighboring classes into consideration but not just
two classes. Finally, it is desirable to estimate the degree of
class structure ambiguity not only for flat class structure but



for hierarchical one. It is our future works to tackle these
problems as described above.
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