FRERARAELIR LTI E AR

ER PEFEER- 28 ZICEED
B (25R)

T R B !

3 F % 5L 0 NSC 96-2221-E-468-011-MY3
o HOF S 98&087% 01lpx299# 072 31F
I NS A FE T

T EAF A Eey

LA SRR B R

PR AR AL HEem s | ey
FALAFIEAy 4 -JiEzpt@ A B gt g
LTIy 4 -JEem s | RS
FALriEmy 4 -fliEzes@ A B o e
BlripEmy 4Lz AR tELR

o 3N D AP EHZEJIAEwFEMAR 2EET OB AN

o A R 99# 060 22 0P

shoe W BuAPE O FEUTE
34 sl NSC 96—2221—E—468—011—-MY3
HiFHREF: 98# 087 01p3x 99 & 077

S ERCRUEE 00 3 2.
LR adFEA ééfﬁdﬁ]?ﬁ% CEARRF
TR &

SEFLFA(REF PUFERTEY) RS

A kIR T RER 2R

TR 9L R ATy RS

[JA A e RN LAY CEEFEL -

EW E&]“’—(g,{ﬁg GO R F LY L -
O & TE 73 RMIAPTHEE - &

/%@/:—% JT\“ . K//fé_g
21
P
A

REF = ZW g

%
g

31 p

=3
4

FaR+

K =

j\—é’[—%g’:‘— ;3\:;:%» 'Fg/\’}frl l-/L;, L'-»g ’4*W.F§§m£ﬂ7“Aﬁé‘ﬁ

@ @
3;
AN
O
T+
b=
=
P

e AR TR B GUL o d 2 F T A
DB R E LA R 3 (SCDL) P 5 - B AL 3T SRS 0 kg
PP 5 A #0102 14k SCDL - et sk o 5 £ SCDL AT 1L
AR R AP - B IR Y FPAAT- B S RILG PR IR
&f’5W%R}m%“%$%Eﬁﬁx¢i\%%%’é%@i%?ﬂwwpzﬁﬁ

{7 SRR MAE T S % o

Mk Ly FLHERFT AP FERET Rk

Abstract

In this project, a BioSemantic System is presented to bridge complex biological/biomedical
research problems and computational solutions via semantic computing. Due to the diversity of
problems in various research fields, a semantic capability description language (SCDL) is
proposed to serve as a common language and generic form for problem formalization. Several
queries as well as their corresponding SCDL descriptions are provided as examples in this study.
For complex applications, multiple SCDL queries may be connected via control structures. We
also present an algorithm to map a user request to one or more existing services if exist. Finally,
we will rapidly deploy this system into a web application. This makes it easy for the research

community to share the results obtained from proposed research.

Keywords: Semantic computing; semantic capability description language; biomedical

applications; knowledge base

BB B s I
A o 1Y = (o! (SRS I
B e e e —e e e te e et e e te et e abe e teaaeenteeteaaeearaens Il
FE 2 N 7 ettt ettt n et e ettt ettt 1
P ifJe .. 19
B B B e B 3 ettt e e be e beeh et et et e te e teeteebeebeere e e et eteeas 21

LR B
AREPNFHFEAINS LH B DR p

T4 & # ¢ International Journal of Semantic Computing (1JSC)
% # : Volume: 2, Issue: 2

dvasp g June 2008

B % pp. 291-308

World Scientific

www.worldscientific.com

International Journal of Semantic Computing
© World Scientific Publishing Company

USING SCDL FOR INTEGRATING TOOLS AND DATA FOR COMPLEX
BIOMEDICAL APPLICATIONS

Shu Wang®, Rouh-Mei Hu? Han C.W. Hsiao®, David A. Hecht®*, Albert K.L. Ng?,
Rong-Ming Chen®, Phillip C.Y. Sheu®?, Jeffrey J.P. Tsai*®

'Department of Electrical Engineering & Computer Science, University of California at Irvine, USA
?Department of Biotechnology, Asia University, Taiwan
®Department of Bioinformatics, Asia University, Taiwan
*Department of Chemistry, Southwestern College, USA
°Department of Computer Science & Information Engineering, National University of Tainan, Taiwan
®Department of Computer Science, University of Illinois at Chicago, USA

Received 20 October 2007
Revised 21 January 2008
Accepted 23 March 2008

Current bioinformatics tools or databases are very heterogeneous in terms of data formats, database
schema, and terminologies. Additionally, most biomedical databases and analysis tools are scattered
across different web sites making interoperability across such different services more difficult. It is
desired that these diverse databases and analysis tools be normalized, integrated and encompassed
with a semantic interface such that users of biological data and tools could communicate with the
system in natural language and a workflow could be automatically generated and distributed into
appropriate tools. In this paper, the BioSemantic System is presented to bridge complex
biological/biomedical research problems and computational solutions via semantic computing. Due
to the diversity of problems in various research fields, the semantic capability description language
(SCDL) plays an important role as a common language and generic form for problem formalization.
Several queries as well as their corresponding SCDL descriptions are provided as examples. For
complex applications, multiple SCDL queries may be connected via control structures. We present
an algorithm to map a user request to one or more existing services if exist.

Keywords: Semantic computing; semantic capability description language; biomedical applications

1. Introduction

Since the development of chain termination of a DNA sequencing method by Sanger and
his colleagues in 1977 [1] and the subsequent development of computational methods for
data retrieval and analysis [2-6], bioinformatics has become a new area of research. Many
new experimental technologies have been rapidly developed that include: systematic
analysis of gene expression profiles at the transcriptional level as well as the translational
level using DNA microarrays, 2D protein gel electrophoresis and mass spectroscopy [7-
9]; yeast two-hybrid system for detection of protein-protein interactions [10]; and NMR

2 Author’s Names

or X-ray crystallography for the resolution of protein 3D structures [11]. These advances
and new technologies have resulted in the rapid accumulation of immense amounts and
types of data. These data can be found and data-mined in primary databases containing
large-scale experimental data such as GenBank [12] and secondary databases providing
biology knowledge such as Pfam [13], Transfact [14], GO [15] and KEGG [16].

Many tools have been developed for biomedical applications such as sequence
alignment, gene finding, genome assembly, analysis of differential expression, protein
structure alignment, protein structure prediction, prediction of protein-protein
interactions, and modeling of evolution. While most of the databases and tools are
available on web and easily accessible for users, current bioinformatics tools or databases
are very heterogeneous in the following aspects:

(1) The input and output formats of different tools are generally restricted to

fixed formats which are different.

(2) Databases were constructed on different systems or platforms in different

formats (schema).

(3) The terminologies, such as gene name, gene 1D or accession number, are

heterogeneous.

As most biomedical databases and analysis tools are scattered across different web
sites users have to partition their jobs manually into several tasks and do them separately.
Training and technical support are often necessary for a user to design a correct
workflow. Sometimes, different data models and document structures make two tools
incompatible. Thus, interoperability across such different services becomes more
difficult.

It is desired that different databases and analysis tools be normalized, integrated and
encompassed with a semantic interface such that users of biological data and tools could
communicate with the system in nature language and a workflow could be automatically
created and distributed into appropriate tools. Biologists should be allowed to concentrate
on their research and not the job of interfacing disparate systems and data sets. Usability
is of importance to the future of bioinformatics tools. Increased usability has been linked
to decreased training expenditures and time, as well as to improving human performance
and productivity, ensuring better quality of work, and minimizing the risk of user error in
data entry [17].

Instead of focusing on analysis of one characteristic of a gene/protein at a time, a new
generation system for bioinformatics analysis must be capable of offering all information
or knowledge regarding a gene/protein in response to a simple query. Moreover, a future
bioinformatics system must be able to predict and to model basic principles of systems of
higher complexity, like the interaction networks in cellular processes and the phenotypes
of whole organisms.

In this paper we describe the BioSemantic System which is a framework that allows
heterogeneous tools and data to be integrated via a service-oriented architecture (SOA)
for declarative access. [18] This paper is organized as follows. In Section 2, the structure
of the BioSemantic System is described. Section 3 gives an introduction to SCDL

Instructions for Typing Manuscripts (Paper’s Title) 3

(Semantic Capability Description Language), a language the BioSemantic System uses to
describe what a service does rather than what a service needs, with examples illustrating
some representative biomedical applications. Section 4 discusses how multiple SCDL
queries can be connected via control structures for complex applications and how user
requests are processed in BioSemantic. These are followed by discussion and conclusions
in Section 5.

2. BioSemantic System

The ultimate objective of the BioSemantic System is to provide an integrated framework
for prospective users to facilitate their works, such as biological and biomedical
knowledge retrieval, management, discovery, capture, sharing, delivery and presentation.
As illustrated in Figure 1, the system is able to provide a number of different web
services (or service bases), which can be incrementally plugged in to the system. Each
service has its own database as well as functions (or tools) to perform the tasks
mentioned above. Accordingly, a common language for these supported service bases to
communicate with the system is necessary to formalize and formulate a variety of
problems. Semantic Capability Description Language (SCDL) is thus proposed to meet
this requirement, and will be introduced in more detail in the next section.

BioSemantic

User Requests in
SCDL

(SCDL Descriptions

U U U U
Service Base Service Base Service Base Service Base
(data, tools) (data, tools) (data, tools) (data, tools)

Figure 1. Service framework of BioSemantic System.
The current system relies on SemanticObjects™ [19] as the core technology, which is
a development environment that provides an object relational layer on top of relational
data sources that could assist designers generate a global schema to capture the semantics

4 Author’s Names

of compound objects. Objects are defined within a global schema and wrapped by Java
classes. Data are stored in different data sources and manipulated by SemanticObjects™
transparently without depending on further data sources. The global schema is mapped to
local data sources by a mapping module. Using the Objects Designer, the user can declare
object classes as well as define their operations and behaviors. The data associated with
actual objects are stored in the data sources. An SNL (Structured Natural Language)
parser is also provided to allow the user to compose their queries in SCDL, using Web
Tools. Hence, a solution developed in SemanticObjects™ is extensible and user
programmable based on SCDL. We envision that the system being used as follows. Users
will define the problem by composing an SCDL query or an SCDL program. The SCDL
request is parsed into a set of queries in SemanticObjects after service search and service
synthesis are done.

3. Semantic Capability Description Language

Semantic Capability Description Language (SCDL) is an SQL-like description language
that may be utilized to describe the functionality and capability of a database driven web
service, with an objective to support automatic service composition. The syntax of SCDL
for a web service WS is similar to that of SQL, as expressed in the following generic
form:

SELECT outputs (Oy,..., 0,,), aggregated-outputs (f1(A41),. .., fu(4.))
FROM inputs ({y,..., 1,,), variables (Ry,..., R,), other variables (Sy,...., Sy)
WHERE p(inputs, outputs, other variables)

GROUP BY (Hi,..., H)

where Oy,..., O, are output objects; f1(41),..., f{(4,) are possible aggregation functions,
L,..., I, are input objects; Ry,..., R, are some range variables; S,...., S; are sets that may
be derived from the inputs and the range variables; H,..., H; are the variables based on
which to group the output objects; and p(inputs, outputs, other variables) is a formula that
describes the relationships among the inputs, the outputs and the variables. Like SQL-99,
SCDL allows variables to be typed, and it allows a function to be included as a condition
in the WHERE clause. A major difference between SCDL and SQL is that SCDL allows
“exponential variables”, where the domain of an exponential variable could be the set of
all subsets of an existing set, and variations of exponential variables to represent
biological variables (We will see some examples later in the paper). The corresponding
algebraic expression is as follows:

1)

Note that while an SCDL expression may be executable, in practice it is often not realistic
to do so. The language is utilized for the purpose of service search/synthesis only. By
comparing the capability of a service expressed in SCDL and a query in SNL (that can be
converted into SCDL), a match (one-to-one mapping) may be determined. In order to be

Instructions for Typing Manuscripts (Paper’s Title) 5

more flexible, the present system also accommodates a matching mechanism that maps a
query into multiple services (one-to-many mapping). In the following sections we shall
illustrate the use of SCDL for describing some typical biomedical applications.

3.1 Notations and Definitions

The notations used in the rest of Section 3 are listed below:

» A DNA sequence is a string of nucleotide bases g;, where g; € NA={A, T,C, G}, i =
1,nneZ’

» An RNA sequence is a string of nucleotide bases ¢;, where g; e NB={A, U,C, G}, i =
1, ...,n;neZ", and each element has an attribute called charge and an attribute called
molecular weight;

» A protein sequence is a string of amino acid a;, where a; € A4 ={F, Y,C, W, L, P, H,
QILMTNK,SR,V,AD,EG}i=1,..,nneZ;

» The predicate blast(A,B) is true if nucleotide_sequence 4 blasts nucleotide_sequence B,

« M designates the set of all possible DNA sequences;

« M designates the set of all possible RNA sequences;

« 2 designates the set of all possible protein structures;

» The function (s,, s,).Similar() calculates the structural and/or sequence similarity to
compare it with a predefined threshold .

3.2 Primary Sequence Analysis

Primary sequence analyses of genes and proteins represent a fundamental class of
applications that are routinely performed. These analyses depend solely on the underlying
nucleic acid sequences for genes, and the amino acid sequence for proteins. These
analyses often cover the BLAST, alignment, and prediction of protein families, domains
and functions. Presented below are several examples chosen to demonstrate the wide
applicability of SCDL and BioSemantic System to primary sequence, structural analyses
and alignment problems.

3.21 BLAST Problem

Perhaps one of the most common tasks in biological research today is that of identifying
genes and proteins related or similar to a particular sequence. The task is often performed
with BLAST (NCBI, http://www.ncbi.nim.nih.gov/blast/Blast.cgi). The SCDL describing
a representative query is presented below:

Example 1. Find nucleotide or amino acid sequences from a database that are similar to
a given sequence.

SELECT N

6 Author’s Names

FROM AM(input) s, 2N¥(input) s°
WHERE blast(s, s”)

3.2.2 Sequence Alignment Problem

Another common problem is that of aligning multiple sequences of nucleic acids and/or
proteins. The objective is to identify which regions are conserved and which are different.
This problem becomes complicated by the fact that there can be intervening sequences of
varying lengths that play little or no functional/structural role. The SCDL describing a
representative query for finding subsequence pairs that match with statistical significance
is presented below:

Example 2. Given two nucleotide or amino acid sequences, align based on matching
residues and minimizing mis-matches and gaps.

SELECT (s, s,)
FROM M(input) u € Q, M(input) v € O, £s,, £'s,, float(input) t
WHERE u # v AND (s,, 5,).Match() > t

where u and v belong to the set Q of sequences, s, is any subsequence that may be derived
from u, and s, is any subsequence that may be derived from v. The problem may be
solved using one or more of the following services:

» Align at NCBI (http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi);

» CLUSTALW at EBI (http://www.ebi.ac.uk/Tools/clustalw/);

» Mutalin (http://bioinfo.genopole-toulouse.prd.fr/multalin/multalin.html);
» Weblogo (http://weblogo.berkeley.edu/logo.cgi);

e STRAP (http://www.charite.de/bioinf/strap/); and

» various Regulatory Sequence Analysis Tools (http://rsat.ulb.ac.be/rsat/).

3.3 Predict Protein Families, Domains and Functions

In biological systems the structure of a macromolecule such as a protein determines its
function. Much effort has gone into analyses of primary sequences to predict the structure
and function of expressed proteins. This includes the prediction of protein family and
domain. Several representative examples are presented below.

While it is often the case that similar primary sequences result in similar 3D protein
structures, in many cases different primary sequences also can result in similar 3D
structures. Many tools and algorithms have been generated to perform these types of
analyses and predictions. Following is a representative example.

Example 3. Find all proteins from a database that share a structural similarity to a given
protein.

SELECT y

Instructions for Typing Manuscripts (Paper’s Title) 7

FROM &(input) u, &“(input) v € db, £Ms,, £Ms,, £“Pu, v), £“p(s,, sv),
float(input) ¢
WHERE (s,, 5,).Similar() > t

where u is an input protein that is a member of the protein structure database db, v is an
input protein that is a member of the protein structure database db, s, is any substructure
that may be derived from u, and s, is any substructure that may be derived from v . The
function (s, s,).Similar calculates the structural similarity to compare it with a predefined
threshold . The problem may be solved using one or more of the following services:

e FSSP (http://www.chem.admu.edu.ph/~nina/rosby/fssp.htm), and

e CATH (http://lwww.cathdb.info/).

3.4 Microarray Analysis

Microarray experiments are routinely used to study gene expression and metabolic
pathways. They are also increasingly being used to identify biomarkers and to validate
drug targets, as well as to study the metabolic and potential toxicological effects of
compounds in a high-throughput mode. The amount of data generated from these
experiments is astronomical and new tools like the BioSemantic System are needed for
data-mining and knowledge retrieval and synthesis.

Example 4. Given a set of microarray data c, select genes that are significantly over
expressed.

SELECT ¢

FROM setof-microarray(input) MA4, MA c, float(input) upper_threshold
GROUP BY c.gene

HAVING avg(c.value) > upper_threshold

Example 5. Given a set of microarray data ¢, select genes that are significantly under
expressed.

SELECT ¢

FROM setof-microarray(input) MA4, MA c, float(input) lower_threshold
GROUP BY c.gene

HAVING avg(c.value) < lower_threshold

3.5 Drug Discovery

According to current estimates, it takes about $1.3 billion and 12~15 years to bring a new
drug to market. The reason is that there are many incredible difficulties at every step of
the discovery and development process. In recent years, computational approaches have
been successfully applied to enhance efficiency and productivity. Again, we see this as an

http://www.cathdb.info/

8 Author’s Names

area where SCDL can be utilized to define complex problems and will ultimately lead to
new tools and computational approaches

Perhaps the most fundamental problem in drug discovery is to find compounds that have
similar structures or substructures to each other. These can be out of very large databases
often > 10°~10°. There are many software products available to perform these queries.

Example 6. Find compounds from a data source that contain one or more substructures
that are similar to a given substructure.

SELECT ¢
FROM &"(input) s, £“(input) ¢ € db, £'s,, float(input) ¢
WHERE (s, s.).Similar() > t

where ¢ is an input compound from the compound database db, £° denotes all possible
substructures that may be derived from ¢, and s. is any member of £°. Given a
substructure s, the function (s, s.).Similar() calculates a score of similarity between s and
s. that is to be compared with a predefined threshold ¢.

4. Complex Queries

In many situations a complex analysis cannot be accomplished by a single query. Instead
the use of multiple queries and actions involving some workflow are required. Simple
control structures can be added to SCDL to connect several queries. For example, the
following SCDL program segments may be composed and executed during a user session
(via a higher level interface.)

Example 7. Given a cellular pathway p and a set of microarray data ¢, highlight the
genes that are over expressed and the genes that are under-expressed in
different colors.

SELECT g

FROM setof-microarray(input) MA, MA c, float(input) upper_threshold
GROUP BY c.gene

HAVING avg(c.value) > upper_threshold

CALL the result G™"

SELECT g

FROM setof-microarray(input) MA, MA c, float(input) lower_threshold
GROUP BY c.gene

HAVING avg(c.value) < lower_threshold

CALL the result G

Color (p, g, color)
FROM pathway(input) p, ¥(p) g
WHERE if (g in G“"*") color is blue else if (g in G™*) color is yellow

Instructions for Typing Manuscripts (Paper’s Title) 9

In the above, the function ¥(p) returns the set of genes included in the pathway p.

Example 8. The risk of developing Alzheimer’s Disease (AD) increases and the risk of
developing Huntington Disease (HD) decreases as the average tangle
density in the front cortex decreases. This hypothesis may be verified by
deriving, for example, the following dataset:

Front-density AD Possibility HD Possibility
0-20 100 80
20-39 95 90
40-59 90 100

The following SCDL program segment can realize the above query composed by the user
at run time:

Let tdfc be the tangle density in the front cortex.

SELECT s.AVG(tdfc)
FROM patient s

Call the result set;

SELECT s. MAX(AVG(tdfc))
FROM sety s

Call the result ¢dfc,... // max tangle density in the front cortex

SELECT s.MAX(AVG(tdfc))
FROM sety s

Call the result tdfc,,;, // min tangle density in the front cortex
a = tdfcn

while (& < tdfe)

a=a+ 20;

SELECT s.AVG(tdfc)

FROM patient s

WHERE a - 20 < 5s.AVG(tdfc) < a;

Call the result set;;

SELECT s.AVG(zdfec)
FROM patient s
WHERE s.diagnosis(“AD”) and a — 20 < s. AVG(tdfc) < a;

Call the result set»;
Calculate the ratio of set, and set;

10 Author’s Names

Call the result rat;;
Add (a, rat,) to resulty;

}
a= td.fcmin;

while (a < tdfc)
{
a=a+ 20;
SELECT s.AVG(tdfc)
FROM patient s
WHERE a - 20 < 5. AVG(tdfc) < a;

Call the result sets;

FROM patient s
WHERE s.diagnosis(“HD”) and a — 20 < s. AVG(tdfc) < a;

Call the result sety;
Calculate the ratio of set, and sets;
Call the result rat,;
Add (a, rat2) to result,;
}

If there is an algorithm readily available in the knowledge base, a description of the
problem it solves needs to be matched by the program segment (that in the simplest case
is an SCDL query) so that the algorithm can be used. By comparing the functionality of
an algorithm expressed in SCDL as well and a given SCDL program segment, a match
may be determined. This kind of mapping is called a “one-to-one” mapping. In the
BioSemantic System, we have developed a matching mechanism that maps a query
program into one or multiple algorithms if exist. The BioSemantic System separates two
kinds of SCDL program: SCDL-Pclient and SCDL-Psystem. An SCDL-Pclient is an ad
hoc SCDL program segment submitted by the client, and an SCDL-Psystem is a
procedure predefined by the expert that is stored in the knowledge base. Every SCDL-
Psystem has an implementation and a specification. While the implementation may be
highly procedural compiled in any programming language, the specification is declarative
and written in SCDL. On the other hand, an SCDL_Pclient is always written in SCDL.
Our mapping is always carried out between an SCDL-Pclient and the specification of one
or more SCDL-Psystems. Below are some examples taken from a bio-imaging application:

SCDL-Pclient 1:
SELECT ¢ FROM 2" ¢ WHERE c.satallite-like()

SCDL-Pclient 2:
SELECT ¢ FROM 2"“" ¢, float(input) beta WHERE c.satallite-like() AND
c.brightness() > beta

SCDL-Psystem1 [satallite-like-set-solver(r, g)]:
SELECT r FROM set-of-blob(input) g, 2° r WHERE r.satallite-like()

SCDL-Psystem2 [brighter-than-set-solver (r, g, theta)]:
SELECT s FROM set-of-blob(input) h, float(input) f, 2" s WHERE s.brightness() > f

Instructions for Typing Manuscripts (Paper’s Title) 11

The BioSemantic System defines five features for each SCDL-Pclient and the
specification of each SCDL-Psystem: Inputs, Outputs, Control-Structure, Actions and
DataTypes, where Inputs consist of a set of input variables, Outputs consist of a set of
output variables, Control-Structure is the control flow, Actions consist of the actions and
methods used in the program, and DataTypes are the types of the variables used. For
example, the five features from Example 8 are:

Inputs: blob

Outputs: set-of-blob

Control-Structure: NO

Actions: satallite-like, brightness, ... from ... where...etc.
DataTypes: blob

Now, given an SCDL-Pclient, we will analyze and decompose it into one or more
SCDL-Psystems in some sequence. The analysis is done in three steps. First, a program
slicing technique [20] is applied based on the program dependency graph (PDG), where a
program slice consists of the parts of a program that potentially affect the values
computed at some point of interest referred to as a slicing criterion (Here we call it
SCDL-Pslice). Second, we will calculate the “similarity” between an SCDL-Pslice and an
SCDL-Psystem based on the features {Inputs, Outputs, Control-Structure, Actions,
DataTypes} so that if the value of “similarity” is above certain threshold, the SCDL-
Pslice and SCDL-Psystem would have some matching potential. Subsequently, we will
use the test cases provided with the SCDL-Psystem to verify whether the SCDL-Pslice
and SCDL-Psystem are really matched. If so, the implementation of the corresponding
SCDL-Psystem can be used to substitute the SCDL-Pslice. The core of the proposed
approach therefore consists of two problems: how to slice an SCDL-Pclient into SCDL-
Pslices and how to define the similarity between an SCDL-Pslice and an SCDL-Psystem.

Program slicing, first introduced by Weiser in 1979 [20], is a decomposition
technique that extracts from those statements of a program relevant to a particular
computation. Slicing was first developed to facilitate debugging, but it was then found
helpful in many aspects of the software development life cycle, including debugging,
testing, software measurement, program comprehension, maintenance, program
parallelization, etc.

For a complicated language with pointers like C (or an object-oriented language like
C++ or Java), program slicing is very difficult. In most cases, it cannot be done in real-
time. For SCDL, fortunately, it is possible to be done efficiently and accurately. Because,
first, SCDL does not contain pointers or references, so variables can be easy to identified
and traced. More importantly, SCDL is a query-based programming language, thus a lot
of computational details may be hidden via object relational queries.

Given an SCDL-Pslice or SCDL-Psystem, we can build a program dependency graph
(PDG) by tracing the dataflow. Every node in the PDG is a subset of the program that
includes only those program elements that may affect the values of the variables used in
it. Previous research in program slicing has illustrated that a node in a PDG is a
semantically meaningful subset of the original program.

12 Author’s Names

As an example, consider the SCDL program segment (called Pclient3 hereafter)
discussed in Example 8. By tracing the variable a, we can find two semantically complete
code segments SCDL-Pslice2 and SCDL-Pslice3. The entire SCDL program segment is
also identified as a semantically complete segment, called SCDL-Pslicel. Because there
is no dependency between result; and result,, SCDL-Pslice2 and SCDL-Pslice3 are
independent of each other. The relationships among these slices are shown in Figure 2,
and the features of Pclient3 are listed in Table 1.

Setl SetZ Sety Serd

Ratd
v

‘ Fesulft] |

"""""""""""""""" A \r"“““““““““"“““'
1 1
While increasing a / ¥hile dncreasing a
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

al

Figure 2. An example of program slicing.

We define the program similarity S, € [0, 1] as
S = (aSpamm + ﬂscontral + ﬁacu‘on + dgdtltﬂfype) /1111 (1)

prog
where S, is the similarity between the inputs and outputs of the given two programs,

Seonror 1S the similarity between the control structures of the two programs, S.... is the

similarity between the actions in the two programs, and Syu.y. is the similarity between

the data types employed in the two programs. If S, = 1, the two programs are exactly
the same. In this study, we found the following assumptions should hold as restrictions on

Equation 1.

1. S,uam Should have the highest priority in determining S, It is quite clear that if two
programs have different inputs and outputs, they basically cannot match. So here we
assign o = 1.

2. Scomror Should have the second priority, followed by S,.1ion @ Satanpe- Thus, we have
1>p>y>0>0. For simplicity, we may assign = 0.1, y = 0.01, and ¢ =0.001.

We can define S,,,,.. as follows:

Instructions for Typing Manuscripts (Paper’s Title)

Table 1. Features of Pclient3.

13

2

PSystem3 PClient3:SCDL-Pslicel PClient3:SCDL- PClient3:SCDL-
Pslice2 Pslice3
Inputs int, int, density int, int,set int, int,set int, int,set
, disease, set
Outputs set set set set
Control- WhileQ{}; WhileQ{}; WhileQ{} WhileQ{} whileQ{}
Structure
Acti show.. from ..; show.. from ..; show.. from ..; show.. from ..;
ctions AVG(density);

AVG(tdfc); show.. from | AVG(tdfc); show.. AVG(tdfc); show..
show.. from ..; - from ..; from ..;
AVG(density);

AVG(tdfc);calculate AVG(tdfc);calculat | AVG(tdfc);calculat
calculate the the ratio of .. and e the ratio of .. e the ratio of ..
ratio of .. and .; add.. to..; show.. and ..; add.. to..; and ..; add.. to..;

.3 from ..;
add.. to..; AVG(tdfc); show.. from
AVG(tdfc);calculate
the ratio of .. and
.; add.. to..;
l)ahlfypes int, set, Patient int Set Patient int Set Patient int Set Patient

Consider an SCDL-Pslice that has control-structures {Cas, Cao,
Psystem that has control-structures {Cg;, Cagy,

...} and an SCDL-
...}. Note that we will combine those

different control-structures having the same semantic meanings, e.g., For each.... and
Loop..., into one. We can define S, as follows:

(4)

Suction ANA Syaranpe €AN be calculated in a similar way. The similarity between Pclient3 and
Psystem3 is calculated as follows.

14 Author’s Names

PSystem3: Calculate Disease Trend
input: min, max, density, Disease, sety
output: result,

Let a be min;

while (a < max)

{
a =a +delta;
SELECT s5.4VG(density)
FROM patient s
WHERE a - 20 < 5.AVG(density) < a;

Call the result set;;

SELECT s.AVG(density)
FROM patient s
WHERE s.diagnosis(Disease) and a — 20 < s.AVG(density) < a;

Call the result sets;

Calculate the ratio of set, and set;
Call the result rat;;

Add (a, rat,) to resulty;

After program slicing, it is necessary to calculate the program similarity between
<PClient3:SCDL-Pslicel, PSystem3>, <PClient3:SCDL-Pslice2, PSystem3>, etc. For
example, the similarity between <PClient3:SCDL-Pslicel, PSystem3> can be computed
as:

S]lmg = (aS + ﬂSwntml +]/Sactiml + dsdumtypc) /1111

where a =1, #=0.1, y=0.01, 6 = 0.001, and

Sparam = 3 + 17 =0.571
/13 inputs are the same, 1 output is the same, maximum parameter number is 6

Scontrol = (l + 1) / (1 + 2) = 0667
//Both have the control structure “while ...”. The only difference is their occurrences.

Saction = (6 + 6) / (6 + 12) = 0667
//IBoth have the same actions but different occurrences

param

Sdatat}pe =1
1IThe only Suuanpe Used in these two programs are Patient and List.

Therefore, S,,,, = (0.571 + 0.0667 + 0.00667 + 0.001) / 1.111 = 0.581. Likewise, we can
obtain the following, where the threshold is 0.6:

Similarity Value
< PClient3:SCDL-Pslicel, PSystem3> <0.6

Instructions for Typing Manuscripts (Paper’s Title) 15

< PClient3:SCDL-Pslice2, PSystem3> 0.700
< PClient3:SCDL-Pslice3, PSystem3> 0.700
< PClientl, PSystem1> 1.000
< PClient2, PSystem1> <0.6
< PClientl, PSystem2> <0.6
< PClient2, PSystem2> 1.000

If we set the threshold to 0.6, the following potential program mappings can be found:

< PClient3:SCDL-Pslice2, PSystem3>

< PClient3:SCDL-Pslice3, PSystem3>

< PClient3:SCDL-Pslicel, PSystem1>

< PClient3:SCDL-Pslicel, PSystem2>
As illustrated in SCDL-Pclient2, an SCDL-Pclient may sometimes be an SCDL query.
Because there is only one statement, so the slicing technique mentioned above cannot be
applied. To address this, consider a single statement query in the following format:

SCDLQuery: SELECT[output+] from [input+] where [condition]
(AND/OR[condition])* HAVING (condition)
condition: input.adjective() | logic composition of input.adjective()

In SCDL-Pclient2, for example, we can find that the verb is “SELECT”, the output is “r”,
the input is “2°°”, the condition is “c.satallite-like AND c.brightness.” We can slice the
statement and extract two conditions as “c.satallite-like” and “c.brightness.” Using the
verb, output, and input, we can build the following table:

verb output input condition
Atomic_SCDL_Queryl Find blob set | blob set | blob is satellite-like
Atomic_SCDL_Query2 Find blob set | blob set | blob is brighter than theta

We call each of them an atomic SCDL query. As a result, we can find that the first query
Atomic_SCDL_Query2 can be matched by SCDL-Psystem1, and the second one can be
matched by SCDL-Psystem2. Finally we can take the intersection of the results returned
by SCDL-Psystem1 and SCDL-Psystem2 to compute the final answers.

5. Discussions and Conclusions

In this paper, semantic capability description language (SCDL) as implemented in the
BioSemantic System is presented to bridge complex biological and biomedical research
problems and computational solutions. Some typical biological/biomedical services as
well as their corresponding SCDL descriptions are given to demonstrate the power of
SCDL in formalizing diverse problems as well as facilitating semantic retrieval.

For most “real-world” research, users will ask questions which are in essence
complex queries. By comparing the functionality of an algorithm expressed in SCDL and

16 Author’s Names

a given SCDL program segment, a matching mechanism is presented to perform a one-to-
one mapping of a query program into one or multiple algorithms, if they exist.

In the BioSemantic System, two SCDL programs are provided for different purposes.
An SCDL-Pclient is an ad hoc SCDL program segment submitted by the client; whereas
an SCDL-Psystem is a procedure predefined by the expert that is stored in the knowledge
base. To ensure a reliable matching between query programs and algorithms, an approach
is presented as well to evaluate the so-called program similarity. The experimental results
indicate that the proposed system including the matching mechanism provides a feasible
solution to semantic computing especially for biomedicine.

It is hoped that with the addition of new SCDL definitions, the BioSemantic System
will be able to address more and more complex as well as relevant biomedical research
problems facilitating the ability of biomedical researchers to ultimately become more
productive. As more cases and services are defined with SCDL, it is hoped that the
BioSemantic System will be used for multiple purposes (besides research) that could
include: medical diagnostics; patient medical records; training and education; as well as
being a resource for troubleshooting and process optimization.

Acknowledgments

This work is supported in part under grant number NSC96-2221-E-468-011-MY3 from
National Science Council, Taiwan. The views, opinions and/or findings contained in this
report are those of the authors and should not be construed as an official National Science
Council position, policy or decision unless so designated by other documentation.

References

[1] F. Sanger, S. Nicklen, and A. R. Coulson, DNA sequencing with chain-terminating inhibitors,
Proc. Natl Acad. Sci. USA 74(12) (1977) 5463-5467.

[2] P. H. Sellers, Pattern recognition in genetic sequences, Proc. Natl Acad. Sci. USA 76(7)
(1979) 3041.

[3] A. Sepulveda, M. Pieber, M. A. Soto, and J. C. Toha, Storage and retrieval of biomolecule
sequences, J Theor Biol. 103(2) (1983) 331-332.

[4] H. Peltola, H. Soderlund, and E. Ukkonen, Algorithms for the search of amino acid patterns
in nucleic acid sequences, Nucleic Acids Res. 14(1) (1986) 99-107.

[5] P. Gilna, L. J. Tomlinson, and C. Burks, Submission of nucleotide sequence data to
GenBank, J Gen Microbiol 135(7) (1989) 1779-1786.

[6] W. R. Pearson and W. Miller, Dynamic programming algorithms for biological sequence
comparison, Methods Enzymol. 210(1992) 575-601.

[7] J. Gollub, C. A. Ball, and G. Sherlock, The Stanford Microarray Database: a user's guide,
Methods Mol Biol. 338(2006) 191-208.

[8] G.R. Mishra, M. Suresh, K. Kumaran, N. Kannabiran, S. Suresh, P. Bala, K. Shivakumar, N.
Anuradha, R. Reddy, T. M. Raghavan, S. Menon, G. Hanumanthu, M. Gupta, S. Upendran, S.
Gupta, M. Mahesh, B. Jacob, P. Mathew, P. Chatterjee, K. S. Arun, S. Sharma, K. N.
Chandrika, N. Deshpande, K. Palvankar, R. Raghavnath, R. Krishnakanth, H. Karathia, B.
Rekha, R. Nayak, G. Vishnupriya, H. G. Kumar, M. Nagini, G. S. Kumar, R. Jose, P.
Deepthi, S. S. Mohan, T. K. Gandhi, H. C. Harsha, K. S. Deshpande, M. Sarker, T. S. Prasad,

[°]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]
[18]

[19]

[20]

Instructions for Typing Manuscripts (Paper’s Title) 17

and A. Pandey, Human protein reference database-2006 update, Nucleic Acids Res. 34(2006)
D411-D414.

O. Langella, M. Zivy, and J. Joets, The PROTICdb database for 2-DE proteomics, Methods
Mol Biol. 355(2007) 279-303.

U. Stelzl, U. Worm, M. Lalowski, C. Haenig, F. H. Brembeck, H. Goehler, M. Stroedicke, M.
Zenkner, A. Schoenherr, S. Koeppen, J. Timm, S. Mintzlaff, C. Abraham, N. Bock, S.
Kietzmann, A. Goedde, E. Toksoz, A. Droege, S. Krobitsch, B. Korn, W. Birchmeier, H.
Lehrach, and E. E. Wanker, A human protein-protein interaction network: a resource for
annotating the proteome, Cel/ 122(6) (2005) 957-968.

H. M. Berman., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne, The Protein Data Bank, Nucleic Acids Res. 28(2000) 235-242.

D. L. Wheeler, T. Barrett, D. A. Benson, S. H. Bryant, K. Canese, V. Chetvernin, D. M.
Church, M. Dicuccio, R. Edgar, S. Federhen, L. Y. Geer, Y. Kapustin, O. Khovayko, D.
Landsman, D. J. Lipman, T. L. Madden, D. R. Maglott, J. Ostell, V. Miller, K. D. Pruitt, G. D.
Schuler, E. Sequeira, S. T. Sherry, K. Sirotkin, A. Souvorov, G. Starchenko, R. L. Tatusov, T.
A. Tatusova, L. Wagner, and E. Yaschenko, Database resources of the National Center for
Biotechnology Information, Nucleic Acids Res. 33(2005) D39-D45.

R. D. Finn, J. Mistry, B. Schuster-Bdckler, S. Griffiths-Jones, V. Hollich, T. Lassmann, S.
Moxon, M. Marshall, A. Khanna, R. Durbin, S. R. Eddy, E. L. L. Sonnhammer, and A.
Bateman, Pfam: clans, web tools and services, Nucleic Acids Res. 34(2006) D247-D251.

V. Matys, O. V. Kel-Margoulis, E. Fricke, I. Liebich, S. Land, A. Barre-Dirrie, |. Reuter, D.
Chekmenev, M. Krull, K. Hornischer, N. VVoss, P. Stegmaier, B. Lewicki-Potapov, H. Saxel,
A. E. Kel, and E. Wingender, TRANSFAC and its module TRANSCompel: transcriptional
gene regulation in eukaryotes, Nucleic Acids Res. 34(2006) D108-110.

Gene Ontology Consortium, The Gene Ontology (GO) project in 2006, NucleicAcids Res.
34(2006) D322-D326.

H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa, KEGG: Kyoto
Encyclopedia of Genes and Genomes, Nucleic Acids Res. 27(1) (1999) 29-34.

D. J. Mayhew, Usability Engineering Lifecycle (Morgan Kauffman, San Francisco, 1999).

D. Hecht, R. M. Hu, R. M. Chen, J. W. Ou, C. Y. Hsu, H. Gong, K. L. Ng, H. C. W. Hsiao, J.
J. P. Tsai, and P. C. Y. Sheu, BioSemantic system: applications of structured natural language
to biological and biochemical research, Proc. Workshop on Ambient Semantic Computing, in
conjunction with 2008 IEEE International Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing, Taichung, Taiwan, 2008, pp. 386-393.

P. C. Y. Sheu and A. Kitazawa, From SemanticObjects to Semantic Software Engineering,
International Journal of Semantic Computing, 1(1) 2007 11-28.

M. Weiser, Program Slicing, Proceedings of 5th International Conference on Software
Engineering, San Diego, CA, Mar. 1981, pp. 439-449.

P > g
’}v"’)fl\‘
(BHRGFATEAPM 2 FEF)

Journal Papers

1.

Han C.W. Hsiao*, S.H. Chen, P.C. Chang, and Jeffrey J.P. Tsali, Predicting
subcellular locations of eukaryotic proteins using Bayesian and k-nearest
neighbor classifiers, Journal of Information Science and Engineering, 24(5),
September 2008, pp. 1361-1375. (SCI)

S. Wang, R.M. Hu, Han C. W. Hsiao, David A. Hecht, K.L. Ng, R.M. Chen,
Phillip C. Y. Sheu*, and Jeffrey J. P. Tsai, Using SCDL for integrating tools and
data for complex biomedical applications, International Journal of Semantic
Computing, 2(2), June 2008, pp. 291-308.

Conference Papers

1.

Alan C.H. Chen, Han C.W. Hsiao, Jeffrey J.P. Tsai, Phylogenetic analysis using
nuclear-encoded mitochondrial proteins, The 9th IEEE International Conference
on Bioinformatics and Bioengineering, Taichung, Taiwan, June 22-24, 2009,
pp.374-377.

Charles C.N. Wang, David A. Hecht, Han C.W. Hsiao, Phillip C.Y. Sheu, Jeffrey
J.P. Tsai, Describing dynamic biological systems in SPDL and SCDL, The 9th
IEEE International Conference on Bioinformatics and Bioengineering, Taichung,
Taiwan, June 22-24, 2009, pp.455-460.

Sean J.S. Lee, Han C.W. Hsiao, Jeffrey J.P. Tsai, Residue contact with dynamic
time warping and least squares adjustment for protein structure alignment, 2009
Conference in Information Technology and Applications in Outlying Islands,
Kinmen, May 22-24, 2009, CD-ROM.

D. Hecht, R.M. Hu, R.M. Chen, J.W. Ou, C.Y. Hsu, H. Gong, K.L. Ng, Han
C.W. Hsiao, Jeffrey J.P. Tsai, and Phillip C-Y Sheu, BioSemantic System:
Applications of structured natural language to biological and biochemical
research, IEEE International Workshop on Ambient Semantic Computing in
conjunction with IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing, Taichung, Taiwan, June 11-13, 2008,
pp. 386-393.

R.M. Chen, M.T. Hou, and Jeffrey J.P. Tsai, A Novel Approach for Motif
Identification in Unaligned Molecular Sequences, The 9th IEEE International
Conference on Bioinformatics and Bioengineering, Taichung, Taiwan, June
22-24, 2009, pp.378-381.

JW. Ou, R.M. Hu, R.M. Chen, C.Y. Tang, Jeffrey J.P. Tsai, An Integrative Tool

19

for Gene Regulatory Network Reconstruction Based on Microarray Data, The
9th IEEE International Conference on Bioinformatics and Bioengineering,
Taichung, Taiwan, June 22-24, 2009, pp.467-470.

J. W. Ou, R. M. Chen, R. M. Hu, and Jeffrey J.P. Tsai ,A Systematic Gene
Expression Explorer Tool for Multiple and Paired Chips Analysis, The Eleventh
SDPS Transdisciplinary Conference on Integrated Systems, Design, & Process
Science, pp. 298-302, 2008.

C. Y. Hsu, R. M. Hu, R. M. Chen, and Jeffrey J.P. Tsai , IHCread: AN
Automatic Immunohistochemistry Image Analysis Tool, The Eleventh SDPS
Transdisciplinary Conference on Integrated Systems, Design, & Process Science,
pp. 294-297, 2008.

20

FEE R

:

APFIPFR L GHF AU IR 25 0 REFAHERY 85 0 &
PEFEBTIEL NS ERF A ERE T (OR
a2 T A o

s A e

e F A R AL ERIEE B R AP
REERP WA T g

xgg‘}—"“;’h'z\ 24 ’%’ AN

RAEAZAFAFL AR AT ESEAR
THAFFIEFRERFL IR S ERAF TR
£S5 o

LR £

%=

21

	2010 NSC Report v1- 1.pdf
	2010 NSC Report v1- 2.pdf
	2010 NSC Report v1- 3.pdf
	2010 NSC Report v1- 4.pdf
	3rd year IJSC08_BioSemantic_SCDL.pdf
	1. Introduction
	2. BioSemantic System
	3. Semantic Capability Description Language
	3.1 Notations and Definitions
	3.2 Primary Sequence Analysis
	3.2.1 BLAST Problem
	3.2.2 Sequence Alignment Problem
	3.3 1Predict Protein Families, Domains and Functions
	3.4 Microarray Analysis
	3.5 Drug Discovery
	4. Complex Queries
	5. Discussions and Conclusions
	Acknowledgments
	15BReferences

	2010 NSC Report v1- 6.pdf

