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計畫主持人：吳家樂 (Ka-Lok Ng) 

1. Introduction 
The interaction between proteins is an important feature of protein function. Behind 

protein-protein interactions (PPI) there are protein domains interacting with each others to 
perform the necessary functions.  Therefore, understanding proteins interactions at the 
domain level gives a global view of protein-protein interaction network (PIN). Putative 
domain-domain interactions (DDI) could be derived using the following approaches:  

(1) association method (Deng et al. 2002), 
(2) domain pair exclusion analysis (Riley et al. 2005), 
(3) integrative approach (Ng et al. 2003a), 
(4) domain combination pair approach, PreSPI (Han et al. 2004), and 
(5) random decision forest model  (Chen and Liu 2005). 
 
2. Method  
2.1 Input data 

The domain combination pair approach (Han et al. 2004) is employed to derive putative 
protein DDI by using the PPI database DIP (Salwinski et al. 2004), Jan. 16, 2006 version, 
which recorded the PPI data for seven species: that is C. elegan, D. melanogaster, E. coli, H. 
pylori, H. sapiens, M. musculus and S. cerevisiae. Protein-domain annotation of DIP can be 
obtained from the protein domain database, Pfam (Finn et al. 2006).  Pfam is a large 
collection of multiple sequence alignments for each domain family and uses hidden Markov 
models to find domains in new proteins. Domains in PfamA are well defined because the 
corresponding multiple sequence alignments and hidden Markov models have been 
checked, and most of the domains have been assigned functions. 

 
2.2 Domain combination pair approach  

Assuming a protein A contains n domains, there are 2n-1 different domain combinations, 
the so-called power set of A with the empty set excluded, ps’(A), according to the domain 
combination pair approach. Then given an interacting protein pair (A,B) with m and n 
domains respectively, one considers that there are (2m-1)*(2n-1) possible DDI. The set of 
domain combination pairs of two proteins A and B, DC(A,B), is defined by 

DC(A,B) = {ps’(A) × ps’(B)}                         (1) 
where × denotes the Cartesian product of set ps’(A) and ps’(B). Since a protein can either 
has a single domain or multiple domains, combination of possible domain pairs can be 
derived from each of the interacting protein pair obtained from the DIP database (Salwinski 
et al. 2004).  

To measure the likelihood of a DDI, the domain combination pair interaction matrix M is 
introduced. The element Mαβ denotes the weighted interaction probability of a domain pair 
(α, β) for a given protein pair (Ai , Bj), and its value is given by 
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where |S| denotes the cardinality of set S, the summation is over all possible pairs of (Ai , Bj) 
such that α and β is an element of ps’(Ai) and ps’(Bj) respectively.  Then, the elements of 
the normalized DDI interaction matrix APαβ (so-called appearance probability matrix (Han 
et al. 2004) is defined by  
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The matrix element APαβ represents the DDI probability of domain combination α and β. 
If a DDI is found more frequently than expected by chance, it is likely that this DDI is a 
true interacting domain pair.   

The results of putative DDI are computed for seven species. For each species, a negative 
learning set is constructed in order to improve the accuracy of DDI prediction. That is, 
given N proteins having K protein-protein interactions among them, the size of the negative 
learning set is equal to CN

2 + N – K. This number represents the total number of 
non-interacting protein pairs for a particular species. Then, we calculated the probability of 
the DDI for the negative set of domain combination pairs, but now in the non-interaction 
space. Introduction of the negative learning set generated three AP matrices, one for the 
DDI space, I, one for the domain-domain non-interaction space (derived from the negative 
learning set), R, and the matrix elements of these two matrices are denoted by API

αβ and 
APR

αβ   respectively. The overlapping region of matrices API and APR
   is denoted by APC, 

where C denotes the overlapping part.  In other words, the domain combination pairs of two 
proteins A and B could be classified into three categories, that is DCI(A,B), DCR(A,B) and 
DCC(A,B). 

After constructing the AP matrices, one can predict the interaction probability between 
the protein pair (A, B) based on the three AP matrices. Let X denotes the PPI and non-PPI 
events. A value of one and zero represent the PPI and non-PPI event respectively. Given the 
domain information for proteins A and B, one could determine the interaction probability 
using the Bayer’s rule, that is 
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where Itotal and Rtotal in the above equations represent the total number of interacting and 
non-interacting protein pairs, respectively, ( C

IAP )αβ and ( C
RAP )αβ denote the interacting 

and non-interacting probability of domain combinations α and β in the overlapping space 
respectively, furthermore, P(X=0) = 1 – P(X=1). The constant k is inserted into the Eq.(5) 
because the exact ratio of Itotal and Rtotal in nature is unknown. The ratio of the total number 
of interacting and non-interacting protein pairs is determined by using the method of 
maximum-likelihood estimation. The maximal likelihood function L is defined by 
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where n is the total number of possible PPI, x is the total number of known PPI, and p is the 
probability of PPI. The parameter k is determined by the following condition, 
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Once the probabilities of the non-interacting values for the domain combination pairs are 
obtained, then the probability of PPI is computed.  

The probability that a protein pair (A, B) with m and n domains respectively could 
possibly interacting is estimated by the Primary Interaction Probability (PIP) (Han et al. 
2004). PIP is given by 
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where API-C denotes the matrix elements appear in the API – APC space, and ||AP|| denotes 
the total sum of the matrix elements of AP. 

In order to test whether the computed PIP results can provide potential PPI links between 
the proteins, three biological pathways (the yeast septin, E.coli chemotoxic pathway, and 
the blood coagulation pathway) are selected, then the pairwise PIP values for each pathway 
are computed and ranked, and the PPI prediction accuracy is determined by comparing with 
the corresponding experimentally determined network. 
Three statistical measures are defined to characterize the prediction performance, that is 
the accuracy, Q, true positive specificity, STP , and true negative specificity, STN, they are 
defined as Q = (TP+TN)/(TP+TN+FP+FN), STP = TP/(TP+FP), and STN = TN/(TN+FP) 
respectively. TP, TN, FP and FN stand for true positive, true negative, false positive, and 
false negative events respectively. 
 
2.3 Order index 
Assuming that proteins A and B interacts, the AP-index of protein is defined by 

∑
∈

−=
)('

)(log)()(
ApsdA

dApdApAH                      (1) 

where dA stands for an element of ps’(A), and p(dA) denotes the DDI interaction 
probability of domain combination dA, For example, H(A) is replaced by 
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dA APAP . If H(A) is greater than H(B), then it is claimed that protein A 

regulates protein B. The rationale is based on the assumption that protein contains DDI 
with a larger API value could possibly play the role of an upstream regulator. 
 
3. Results 

3.1 Putative DDI results and InterDom 

To evaluate the prediction, the putative DDI results are compared with that of the 
database InterDom v.1.2 (June 2004). The results are depicted in Table 1.  

In Table 1, we present the comparison of our putative DDI results with that of the 
database InterDom. All the DDI (NDDI) are selected from our pre-computed DDI data, and 
compared with the InterDom records. Only DDI with a score larger than or equal to 0.4 are 
selected from InterDom in the comparison. InterDom assigns a score from 0 to 49322 for 
DDI, a score of 0.4 and above accounts for 90% of the 30037 records. The effective 



number of DDI, EDDI, denotes single-domain interaction, and it does not include domain 
combination pair DDI, since these types of DDI are not available in InterDom. MDDI stands 
for the matched DDI, and the matching ratio SM is defined as MDDI/EDDI *100%.  
 
Table 1. The putative domain-domain interaction results (NDDI) obtained by the domain 
combination pair approach compared with that of the database InterDom. 

 
In the InterDom comparison study, the DDI matching ratio ranges from 66.3% to 89.5% 

for the seven species. An average matching ratio of 75.7% is obtained, this indicates the 
model is rather sucessiveful. 

3.2 The yeast septin complex 

To verify whether the pre-computed DDI results can provide potential PPI links between 
proteins, three biological pathways, i.e. the septin complex, the E. coli chemotaxis pathway 
and the blood coagulation pathway, are selected for further study. The predicted PPI events 
among those proteins in these three pathways are compared with the experimentally 
determined PPI networks.  

For the first comparison, the yeast septin complex, which composed of six proteins 
(CDC3, CDC10, CDC11, CDC12, GIN4, SHS1), is selected.  Thus, there are 15 (C6

2) 
possible PPI among the proteins. A PPI link is assumed if the PIP value is larger than or 
equal to 0.1, our method correctly predicted that all six proteins interact with each other, 
that is a prediction accuracy Q of 100% (15/15) is achieved as well as STP and STN. The 
same prediction accuracy is reported by InterDom. In contrast, PreSPI returned an error 
message (PIP_Value = error) for each of the 15 possible interactions. In this case, our 
prediction performed much better than PreSPI. 

The PIP threshold is set at the 0.1 level because this is the least stringent value among the 
three PPI cases we studied. Use of a small PIP threshold would predict more PPI, but most 
of them are false positive interactions. In order to show how the threshold affects the 
prediction accuracy and specificity performance, a higher threshold value of 0.6 is selected 
for further study, and the results are reported in section 3.3 and 3.4 

3.3 The E. coli chemotaxis pathway 

In the second study, the E. coli chemotaxis pathway is selected. Chemotaxis is the 
response of cells to chemical stimuli by directed movement. The chemotaxis pathway, 
obtained from KEGG (Kanehisa et al. 2006), composed of 11 proteins: MCP (consists of 
trg, tap, CheD, CheM), Aer, CheA, CheB, CheR, CheW, CheY, and CheZ. The predicted 
results based on DDI are depicted in Table 2 (a PPI is assumed if the PIP threshold is set to 
0.1 or 0.6). 

Table 2. Predicted number of protein-protein interactions and the statistical measure results 
with PIP threshold of 0.1 and 0.6 in the E. coli chemotaxis pathway, and compared with 
that of PreSPI. 

 
For the chemotaxis pathway, there are 55 (C11

2) possible interactions among the 11 
proteins. Our prediction returned a PIP value for each of the 55 interactions. PreSPI 
returned only 36 interactions, and the rest are not addressed. The accuracy of our prediction 



is comparable (at the 0.1 threshold level) to PreSPI, whereas 19 more PPI links are 
predicted, and a better true negative specificity STN are obtained. The InterDom database 
gave null result for this pathway study. If the threshold is set to the 0.6 level, it gave a much 
better sensitivity and specificity ratios, for instance, the accuracy, Q, raised from 51% to 
76%, the specificity ratios, STP and STN, raised from 33% to 57%, and 37% to 85%, 
respectively. 

3.4 The blood coagulation pathway 

In the last study, we applied the computed DDI data to reconstruct the blood coagulation 
pathway. Blood clotting occurs via three pathways, intrinsic, extrinsic and common 
pathways, in which a total of 13 proteins are involved. The blood coagulation pathway 
composed of 13 proteins: FI, FII, FIII, FV, FVII, FVIII, FIX, FX, FXI, FXII, FXIII, PKK, 
and HMWK. Based on the DDI data, the predicted results are depicted in the Table 3. In 
general there are 78 possible interactions, but only 48 interactions can be determined in our 
computation (a PPI is assumed if the PIP threshold is set to 0.1 or 0.6) 

Table 3.  Predicted number of protein-protein interactions and the statistical measure 
results with PIP threshold of 0.1 and 0.6 in the blood coagulation pathway, and compared 
with that of PreSPI. 

When comparing our results with those predicted by PreSPI, our prediction achieves a 
much better accuracy (at the 0.1 threshold level). Both computations returned similar STP 
value, however, our calculation obtained a much better value of STN. If the threshold is set 
to the 0.6 level, it gave a slightly better sensitivity and specificity ratios, for instance, the 
accuracy, Q, raised from 54% to 60%, the specificity ratios, STP and STN, raised from 24% 
to 28%, and 57% to 65%, respectively. 

The difference between our results and that of PreSPI is probably because of PreSPI used 
the IntAct (Hermjakob et al. 2004) database for domain annotations, whereas the Pfam 
database is used in our work. It is known that the two databases provide a somewhat 
different set of domain annotations for proteins, this leads to the fact that different inputs 
(the learning set as well as the negative learning set) are used by each study. 

To further characterize PPI, the regulatory orders of PPI for six biological pathways are 
studied, and the results are given in the following sub-sections. All the pathways are taken 
from E.coli and yeast only, since the PPI data and domain annotations coverage rate for 
these two species are relative higher than the other five species, in other words, the problem 
of missing domain annotations and DDI information are less severe in those two species. 

3.5 Order index - E. coli chemotaxis pathway 

The chemotaxis pathway composed of six proteins or protein complexes: MCP, Aer, 
(CheA,CheW), CheB, CheY, and CheZ.  The following five PPI regulatory order pairs are 
recorded in KEGG: MCP-(CheA-CheW), Aer-(CheA,CheW), (CheA,CheW)-CheB, 
(CheA,CheW)-CheY, and CheZ-CheY, where the bracket (…..) stands for protein complex, 
and symbol on the left of a regulatory relation X-Y is the upstream regulatory protein.  

For the chemotaxis pathway, the AP-order index approach correctly predicted the five 
regulatory relationships, it achieves a prediction accuracy of 100% (i.e. 5/5). 

The same method is applied for the other five PPI pathways as well. It is demonstrated in 
the following subsections that the prediction accuracy of the order index approach is very 



encouraging. 

3.6 Order index – the yeast cell cycle DNA damage checkpoint 

The yeast cell cycle DNA damage checkpoint in the G2 phase is selected in this study. In 
this pathway there are 20 regulatory relations among the following 22 proteins or protein 
complexes: Rad17, Rad24, Mec3, Ddc1, Rad9, Mec1, Ctr1, Chk1, Pds1, Rad53, Cdc5, 
(Clb1, Cdc28), Mih1, Cak1, Cks1, Swi5, Sic1, Swe1, (Scf, Met30), Gin4, Hsl1, (Hsl7, 
Hsl1). Since the domain annotation for Mec3, Ddc1, Pds1 and Sic1 are not available (four 
PPI relations are removed), the regulatory relations for Rad17-Rad24, and (Clb1, 
Cdc28)-Cks1 are not clearly defined by KEGG (two more regulatory relations are removed), 
therefore, only 14 relations (the second column in Table 4) among 15 proteins are 
considered in the prediction.  

Among the 14 relations, the relative dependence of Gin4-Swe1 and Hsc1-Swe1 are not 
determined because they have the same AP-order index values, hence, only 12 relations left 
(the third column in Table 4). Among the 12 relations, 7 relations are correctly predicted. 
The seven correct predictions are: Rad9-Mec1, Mec1-Chk1, Mec1-Rad53, 
Cdc5-(Clb1,Cdc28), Mih1-(Clb1,Cdc28), Cak1-(Clb1, Cdc28) and  Swe1-(Clb1,Cdc28). 
Hence, the regulatory order prediction accuracy for the damage checkpoint pathway is 
58.3% (i.e. 7/12). 

3.7 Order index – the yeast cell cycle spindle checkpoint 

For the spindle checkpoint pathway, there are 12 regulatory relations among the 
following 14 proteins or protein complexes: Mps1, (Bub1,Bub3), (Mad1,Mad2,Mad3), 
(APC/C, Cdc20), (APC/C, Cdh1), Cdc14, Swi5, Sic1, Esc5, (Dbf2, Mob1), Dbf20, Tem1, 
Bub2 and Let1. Since the domain annotation for Sic1 and Esc5 are not recorded in the 
SwissProt database, therefore, three of the protein regulatory relations cannot be 
determined. Furthermore, one relation has the same AP-order index value ((APC/C, 
Cdc20)-(APC/C, Cdh1)), hence 8 relations left. The order index method correctly predicted 
seven PPI regulatory order pairs out of the eight relations, these are Mps1-(Bub1,Bub3), 
(Mad1,Mad2,Mad3)-(APC/C,Cdc20), Cdc14-(APC/C, Cdh1), Let1-Tem1, Tem1-Dbf20, 
Cdc14-Swi5, and Bub2-Tem1. Hence, the method achieves a prediction accuracy of 87.5% 
(i.e. 7/8). 

3.8 Order index – the yeast MAPK signaling pathway, starvation 

In this study the yeast starvation, osmolarity and hypotonic shock pathways are selected. 
For the starvation pathway, there are six regulatory relations among the following seven 
proteins, Sho1, Ras2, Cdc42, Ste20, Ste11, Ste7 and Kss1. Among the six relations, the 
relative dependence of Ste7-Kss1 is not determined because it has the same AP-order index 
value. The order index method correctly predicted the regulatory order of the other five PPI 
pairs: Ras2-cdc42, Sho1-Cdc42, Cdc42-Ste20, ste20-ste11, ste11-ste7, ste7-Kss1. The 
method achieves a prediction accuracy of 100% (5/5). 

3.9 Order index – the yeast MAPK signaling pathway, osmolarity 

For the osmolarity pathway, there are eight regulatory relations among the following nine 
proteins: Sho1, Sln1, Ste20, Ypd1, Ste11, Ssk1, Ssk2, Pbs2, and Hog1. Among the eight 
relations, the PBs2-Hog1 relation has the same AP-order index value, hence seven relations 
left. The order index method correctly predicted the six PPI relations: Sho1-Ste20, 



ste20-ste11, ste11-Pbs2, Ypd1-Ssk1, Ssk1-Ssk2, and Ssk2-Pbs2, hence, the method 
achieves a prediction accuracy of 85.7% (6/7) 

3.10 Order index – the yeast MAPK signaling pathway, hypotonic shock 

For the hypotonic shock pathway, there are six regulatory relations among the following 
seven proteins: Mid2, Rho1, Fks1, Pkc1, Bck1, (Mkk1,Mkk2), and Slt2. Among the six 
relations, two relations have the same AP-order index values, hence, four relations left. The 
order index method correctly predicted the three PPI relations: Mid2-Rho1, Fks1-Rho1 and 
Rho1-Pkc1, and Pkc1-Bck1 is incorrectly predicted, hence, the method achieves a   
prediction accuracy of 75% (3/4). 

In Table 4, we summarized the total number of PPI relations recorded by KEGG, the total 
number of PPI with well-defined domain annotation, the number of correct predictions 
determined by the order index method, and the prediction accuracy for the six pathways we 
selected. On average the order index approach can achieved a prediction accuracy of 80.5%, 
that is, for the six PPI pathways we studied, 33 relations are correctly predicted among a 
total of 41 relations. A total of 48 PPI relations are studied, in which seven relations have 
the same AP-order index values, hence, the coverage rate of prediction is 85.4%. 
Table 4.  The prediction accuracy of the AP-order index method with the threshold set to 
1.0. The first column denotes the name of the studied pathway. The second column 
represents the total number of PPI relations recorded in KEGG with which domain 
annotation are well-defined. The third column represents the number of PPI relations left 
after taking into account of the threshold. The fourth column represents the number of 
regulatory orders correctly predicted by the AP-order index method. The last column 
denotes the prediction accuracy of the method. 
 
3.11 Order index – robustness test 

In order to test the robustness of the order index calculation, we assumed that if the 
AP-order index values for two regulatory relations differed by least than 10% (the 
difference between the larger value and the smaller value divided by the smaller one), then 
we considered that the method is not able to determine the regulatory order. The regulatory 
order predictions are repeated for the above six pathways, and the results is depicted in 
Table 5. The order index approach predicted 25 correct relations out of 31 relations, this 
amounts to a prediction accuracy of 80.6%, which is essentially the same as the prediction 
without the 10% difference choice. This indicates that the order index approach is rather 
robust with respect to the choice of threshold. The coverage rate of regulatory order 
prediction is equal to 64.6%, i.e. 31/48. 

 
Table 5.  The prediction accuracy of the AP-order index method with the threshold set to 
1.1. The first column denotes the name of the studied pathway. The second column 
represents the total number of PPI relations recorded in KEGG with which domain 
annotation are well-defined. The third column represents the number of PPI relations left 
after taking into account of the threshold. The fourth column represents the number of 
regulatory orders correctly predicted by the AP-order index method. The last column 
denotes the prediction accuracy of the method. 
 

To account for the statistical significance of the method, a hypothesis test is performed on 
the mean number of correct predictions for the six pathways. Assuming a one-tailed 



binomial probability distribution test, the hypothesis t-test rejects the null hypothesis at a 
99% level. 

 
3.12 A web-based service for PPI and regulatory order prediction  

The predicted domain-domain interaction results are available at 
http://210.70.82.82/kzbio2/r_ap.php. Several query interfaces are implemented to facilitate 
data display, such as the DDI, PIP, PIP query and network reconstruction services. For 
instance, the PIP query service allows the user to input two proteins’ Swissprot 
(Boeckmann et al. 2003) ID and get the probability of their interaction, i.e. the PIP value. In 
case the actual Swissprot ID is not known, user can input domain’s PfamA ID, the system 
could return the predicted probability of the protein interaction. Furthermore, the network 
service allows the user to reconstruct PPI network, and predict the regulatory order of a PPI. 
To reconstruct the PPI network, user can either input a set of proteins or domains IDs, the 
system returns a text file where putative PPI interactions are predicted. The predicted PPI 
network can be visualized by reading the output file using Cytoscape (Shannon et al. 2003). 

We also have set up a web-based service for the public to use the AP-order index method 
for prediction, which is available at http://210.70.82.82/kzbio2/oi.php. For instance, if one 
wants to determine the regulatory order of Aer and (CheA, CheW), prepare the following 
line as an input,  
PF08447,PF00672,PF00015  PF01627,PF02895,PF02518,PF01584 
where the first and second columns denote the PfamA annotations of the Aer and (CheA, 
CheW) proteins.  

Paste the above line in the box provided in the AP-order index web page, give a name for 
the output file, select E.coil under the species manual, and press the send button. The 
platform will return a file which states the prediction result (either A regulates B or not able 
to determine the regulatory order). 
 

4. Conclusion 
The domain combination pair approach is employed to derive putative protein DDI from 

the PPI database DIP. To evaluate the prediction performance of the approach, the DDI 
predicted results are compared with that of the database InterDom, where an average 
matching ratio of 75.7% can be achieved (assuming the Jan. 16, 2006 version of DIP).  

Three PPI networks are chosen to test the prediction accuracy of our computation.  The 
yeast septin complex, and the blood coagulation pathways are reconstructed with a much 
better accuracy and true negative specificity than another study. For the E. coli chemotaxis 
pathway study, comparable PPI prediction accuracy is obtained whereas more PPI and a 
better true negative specificity are obtained in our prediction. This indicated the merit of 
our calculations. Furthermore, an entropy-like quantity, so called AP-order index, based on 
DDI data, is introduced to predict the regulatory order for a PPI. The prediction accuracy of 
this method is demonstrated for six PPI pathways. It is found that this method can achieve a 
prediction accuracy of 80.5%. This implies that the order index is a very reliable parameter 
to determine the regulatory order of PPI. 

There are two major obstacles for the PPI and regulatory order calculations: (i) many 
proteins do not have complete PfamA domain annotations, and (ii) there is the missing DDI 
information problem. Much further experimental works are still needed to resolve prior two 
problems. 
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Table 1. The putative domain-domain interaction results (NDDI) obtained by the 
domain combination pair approach compared with that of the database 
InterDom.  

Species NDDI EDDI MDDI SM(%) 
C. elegan 3874 1751 1142 65.2 

D melagonster 1346 695 523 75.4 
E .coli 59062 12075 1695 66.3 
H. pylori 894 276 247 89.5 
H. sapiens 6327 1187 849 71.5 
M. musculus 1031 206 160 77.7 
S. cerevisiae 39415 4440 3772 84.5 
Average    75.7% 
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Table 2. Predicted number of protein-protein interactions and the statistical 
measure results with PIP threshold of 0.1 and 0.6 in the E. coli chemotaxis 
pathway, and compared with that of PreSPI. 

 Threshold = 0.1 Threshold = 0.6 PreSPI 
TP 13 8 12 
TN 15 34 7 
FP 26 6 17 
FN 1 7 0 

total 55 55 36 
Q 51% 76% 53% 

STP 33% 57% 41% 
STN 37% 85% 29% 

 
Q = (TP+TN)/(TP+TN+FP+FN), STP = TP/(TP+FP), STN = TN/(TN+FP), total = TP+TN+FP+FN.
 
  



 12

Table 3.  Predicted number of protein-protein interactions and the statistical measure results with PIP 
threshold of 0.1 and 0.6 in the blood coagulation pathway, and compared with that of PreSPI. 

 Threshold = 0.1 Threshold = 0.6 PreSPI 
TP 5 5 18 
TN 21 24 0 
FP 16 13 60 
FN 6 6 0 
total 48 48 78 

Q 54% 60% 23% 
STP 24% 28% 23% 
STN 57% 65% 0% 

 
Q = (TP+TN)/(TP+TN+FP+FN), STP = TP/(TP+FP), STN = TN/(TN+FP), total = TP+TN+FP+FN. 
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Table 4.  The prediction accuracy of the AP-order index method with the threshold set to 1.0. The first 
column denotes the name of the studied pathway. The second column represents the total number of PPI 
relations recorded in KEGG with which domain annotation are well-defined. The third column represents 
the number of PPI relations left after taking into account of the threshold. The fourth column represents the 
number of regulatory orders correctly predicted by the AP-order index method. The last column denotes the 
prediction accuracy of the method. 
 

Pathway name Total no. of PPI 
relations 

Actual no. of PPI 
relations 

Correct 
predictions 

Accuracy 
(%) 

Chemotaxis 5 5 5 100 
DNA damage 14 12 7 58.3 

Spindle checkpoint 9 8 7 87.5 
Starvation 6 5 5 100 
Osmolarity 8 7 6 85.7 
Hypotonic 6 4 3 75.0 

Total 48 41 33  
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Table 5.  The prediction accuracy of the AP-order index method with the threshold set to 1.1. The first 
column denotes the name of the studied pathway. The second column represents the total number of PPI 
relations recorded in KEGG with which domain annotation are well-defined. The third column represents 
the number of PPI relations left after taking into account of the threshold. The fourth column represents the 
number of regulatory orders correctly predicted by the AP-order index method. The last column denotes the 
prediction accuracy of the method. 
 

Pathway name Total no. of PPI 
relations 

Actual no. of PPI 
relations 

Correct 
predictions 

Accuracy 
(%) 

Chemotaxis 5 3 3 100 
DNA damage 14 10 7 70.0 

Spindle checkpoint 9 8 7 87.5 
Starvation 6 2 2 100 
Osmolarity 8 4 3 75.0 
Hypotonic 6 4 3 75.0 

Total 48 31 25  
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Self-assessment 
 We have completed the major aims of the proposal, that is deriving putative domain-domain interaction 
pair and introduce the AP-index to predict the regulatory order of a protein-protein interaction pair. A 
web-based service was set up which provide the PPI and regulatory order services for the public. 
 During the period 2004 and 2005, our results are presented, either oral or poster presentations, in 
international conferences and local conferences.  
 
Publications 
期刊論文 

1. Ka-Lok Ng, Chien-Hung Huang*, Hsueh-Chuan Liu, Hsiang-Chuan Liu (2008) 
Applications of domain-domain interactions in pathway study 

Computational Biology and Chemistry, 32 (in press, to appear at 2008) 

2. J.D. Wang, Hsiang-Chuan Liu, Jeffrey J.P. Tsai, Ka-Lok Ng* (2007) 
Scaling Behavior of Maximal Repeat Distributions in Genomic Sequences 

Int’l J. of Cognitive Informatics and Natural Intelligence (to appear) 

3. Kuo-Ching Hsiao, Chien-Hung Huang, Ka-Lok Ng* (2006) 
Protein Structural Classes Prediction via Residues Environment Profile 
Asian J. Health and Information Sci., 1(3), in press 

4. Chien-Hung Huang, Jywe-Fei Fang, Jeffrey J.P. Tsai, Ka-Lok Ng* (2007) 
“Topological Robustness of the Protein-protein Interaction Networks"  

Lecture Notes in Bioinformatics vol. 4023, RECOMB 2005 Regulatory Genomics and Systems Biology 
Workshop, E. Eskin et al . (Eds.), p.166-177, Springer Verlag (SCI 著作)  

* corresponding author 
 
國際性研討會論文或壁報 
2007 年 

1. Liu Hsueh-Chuan, Huang Chien-Hung, Tsai J.F, Ng Ka-Lok* “APPLICATIONS OF DOMAIN-DOMAIN 
INTERACTION IN PATHWAYS STUDY” 5th Asia-Pacific Bioinformatics Conference (APBC2007) Hong 
Kong, 15-17, Jan. 2007, poster abstract p.42. (95 學年) 

國際性研討會論文或壁報 
2006 年 

1. Lee Jeng-ru, Liu Hsiang-Chuan, Tsai J.F., Ng Ka-Lok*. “Large scale prediction of domain-domain interactions 
from protein-protein interactions”. 4th Asia-Pacific Bioinformatics Conference (APBC2006) Taiwan, 13-16 Feb, 
2006. P063 Poster (94 學年) 

2. Huang Chien-Hung, Tsai J.F., Fang Jywe-Fei, Ng Ka-Lok*. "Topological Stability of the protein-protein 
interaction networks”. 4th Asia-Pacific Bioinformatics Conference (APBC2006) Taiwan, 13-16 Feb, 2006. P062 
Poster (94 學年) 

3. Wang J.D., Liu Hsiang-Chuan, Ng Ka-Lok*. "Scaling Behavior of Maximal Repeat Distributions in Genome 
Sequences". 4th Asia-Pacific Bioinformatics Conference (APBC2006) Taiwan, 13-16 Feb, 2006. P061 Poster 
(94 學年) 

4. Chien-Hung Huang, Tsai J.F., Ng Ka-Lok*. “Deriving Domain-domain Interactions from Protein-protein 
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Interactions Networks”. INFORMS06, Hong Kong, 25-28, June 2006, p.40. Oral presentation (94 學年) 

5. Ng Ka-Lok*, Liu Hsueh-Chuan, Liu Hsiang-Chuan, Tsai J.F. “Reconstructing protein-protein interaction 
networks from domain-domain interactions”. Asia Pacific Association for Medical Informatics (APAMI 2006), 
Taipei, October 27-29, 2006. p.31, Oral presentation 全文 (95 學年) 

6. Hsiang-Chuan Liu, Chien-Hung Huang, Ka-Lok Ng “Protein-protein interaction pathways reconstruction from 
domain-domain interactions”. The 7th International Conference on Systems Biology (ICSB-2006), Yokohama 
Japan, 9-11 October 2006. Poster, p.42, FN43 (95 學年) 
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報告內容應包括下列各項： 

一、參加會議經過 

Oct. 8 
 Morning session : Attended Tutorial 8 - Modeling, simulating, and analyzing 

biochemical systems with Copasi 
 Afternoon session : Attended Tutorial 6 - Analyzing Biochemical Systems 

using the E-Cell System 
Oct. 9  

 Attended the Plenary Talks: P1 , P2, P4: Oct. 9th 10:00-12:30  
 P1: Upinder S. Bhalla (The National Centre of Biological Science, Bangalore) 

"Electricity meets Chemistry: Fast and Slow Signaling in Memory "  
 P2: Atsushi Miyawaki (Riken Brain Science Institute)  

"Spatio-temporal Patterns of Intracellular Signaling"  
 P4: Luis Serrano (European Molecular Biology Laboratory)  

"Evolvability and hierarchy in rewired bacterial gene networks" 
Oct. 10  

 Attended the Plenary Talks: P3, P5: Oct.10, 9:00-9:30, 9:30-10:00 
 P3: Stephen Quake (Stanford University / HHMI) 

"Biological Large Scale Integration" 
 P5: Steve Oliver (University of Manchester)  

"Dealing with the complexity of a 'simple' eukaryotic cell" 
  Oct. 11 

 Complex Systems Biology - Oct. 11th, 9:15-10:30  
 Mihajlo D. Masarovic (Case Western Reserve University) 

"Interaction Balance Coordination as Organizing Principle in Complex 
Systems Biology"  

 Jack Donald Keene (Duke University Medical Center) 
"Coordination of Gene Expression by RNA Operons" 

 Kenneth Alan Loparo (Case Western Research University) 
"Applications of Complex Systems Biology to the Study of Neural Systems " 

 Control and System Theory for Systems Biology - Oct. 11th, 11:00-12:30  
 Francis J. Doyle (University of California, Santa Barbara)  

"Robustness Analysis of Biological Networks Using Sensitivity Measures"  
 Pablo A. Iglesias (Johns Hopkins University)  

"Feedback Control Regulation of Cell Division"  
 John Doyle (California Institute of Technology)  

"The architecture of cellular regulation" 
 Signal transduction - Oct. 11th, 14:00-16:30 
 Hans V. Westerhoff (The University of Manchester) 

"Cell-signaling Dynamics in Time and Space"   
 William S. Hlavacek (Los Alamos National Laboratory) 

"Rules for Modeling Signal-Transduction Systems"  
 Philippe Bastiaens (EMBL Heidelberg) 

"Reaction cycles in the spatial and temporal organization of cell signaling" 
       

二、與會心得 

This year the conference was held at Yokohama, Japan. The conference comprises a 
broad area of topics in the area of system biology. 
Topics include,  
• Systems Biology for Medicine 

Drug discovery, Cancer Systems Biology, Systems Immunology, Cardiovascular Systems 
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Biology, Systems Biology of Diabetes and Metabolic Syndrome  
 
• Systems Biology of Basic Biological Processes 

Developmental Systems Biology, Metabolome and Bioprocess, Signal transduction, 
Cyclic and Dynamical Behaviors, Systems Neuroscience, Microorganisms  

 
• Expanding Fronts in Systems Biology 

Large-Scale Biology, Bioinformatics Support for Systems Biology, Synthetic Biology, 
Complex Systems Biology, Systems marine biology 

I had two posters presentation on Oct. 9 and 10. The titles of my two posters 
presentations were (i) Protein-protein interaction pathways reconstruction from 
domain-domain interactions and, (ii) Finding human miRNA genes located within 
promoter regions and associated with CpG islands. 

There were many interesting and good talks presented in this conference. I highlighted their 
main interesting results in below. 

Oct. 8 9:30 am 
Tutotial - Modeling, simulating, and analyzing biochemical systems with Copasi  
Pedro Mendes (Virginia Bioinformatics Institute) 

Copasi (Complex Pathway Simulator) is a software application for simulation and 
analysis of biochemical networks. It is developed jointly by the groups of Pedro Mendes 
(Virginia Bioinformatics Institute, USA) and Ursula Kummer (EML Research, Germany), 
and is freely available for academic use. 

Copasi's current features include stochastic and deterministic time course simulation, 
steady-state analysis (including stability), metabolic control analysis, elementary mode 
analysis, mass conservation analysis, import and export of SBML level 2, optimization, 
parameter scanning and parameter fitting. It runs on MS Windows, Linux, OS X, and Solaris 
SPARC. So, it is one of the few computational tools in systems biology that are OS X 
compatible. 

The presenters use Copasi to explain how the modelling, simulation and computational 
analysis of biochemical systems works. They also critically evaluate the limitations of 
different simulation methods. 

 
Oct. 8 1:30 pm 
Tutotial - Analyzing Biochemical Systems using the E-Cell System  
Nathan Addy, Satya Arjunan, Bin Hu, Yuri Matsuzaki, Martin Robert, Takeshi Sakurada 
Koichi Takahashi (Keio University) 
 

Bifurcation and sensitivity analysis can be used to elucidate the relationship between the 
dynamics of a nonlinear system in biology and the parameters of the system. The bifurcation 
program in E-Cell numerically computes the stable states of the system, such as the stable or 
oscillating point, with graphical representation of results. Elasticity coefficients with respect 
to amplitude and frequency, which indicate the robustness of the oscillation are also 
represented. Participants will experiment with these features hands-on using a simple 
oscillation model – the Drosophila circadian cycle model. 

Metabolic control analysis can demonstrate how fluxes and intermediate concentrations 
in a metabolic pathway are regulated by the enzymes that constitute the system. The analysis 
encompasses structural analysis, elasticity coefficients and the sensitivity of metabolites to 
small changes in individual parameters such as in enzyme concentrations or kinetic 
parameters. Flux and concentration control coefficients are some of the outcomes of 
metabolic control analysis. Participants used metabolic control analysis to evaluate the 
Kuchel's erythrocyte model. 
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October 9 10:00-10:30 am  
“Electricity meets Chemistry: Fast and Slow Signaling in Memory” 
Upinder S. Bhalla 
National Centre for Biological Sciences, TIFR, Bangalore, India 
http://www.ncbs.res.in/~bhalla/index.html  
 

Deliberations on memory mechanisms often seem to proceed on at least three independent 
tracks. One of these involves biochemical mechanisms for plasticity, including feedback loops and 
cellular activation. Space is another dimension, and is the arena for interactions between synapses, 
and propagation of signals between synapses, dendrites, and the cell body. Finally, electrical 
activity is a function of cell as well as network dynamics, and here too feedback may play a role 
through reverberating activity in network loops. It is an interesting process to develop models that 
impinge on all of these levels, because of the wide range of timescales, numerical techniques, and 
sheer computational load. It is especially tricky to get parameters for such models. I will describe 
a study where we have used coupled electrical and biochemical compartmental modeling, and 
weeded out several candidate models by comparing their predictions to our experiments. The 
surviving models incorporate chemical, spatial and electrical ingredients. They exhibit 
network-activity controlled single-cell reverberating activation, with interesting spatial 
consequences. We suggest that this is a form of short-term and spatially defined memory. It sits at 
the interface between individual synapses and dendrites, and also between network and cellular 
attributes of memory. 
 
October 9 10:30-11:00 am 
“Spatio-temporal Patterns of Intracellular Signaling” 
Atsushi Miyawaki 
RIKEN Brain Science Institute 
http://www.brain.riken.go.jp/english/b_rear/b5_lob/a_miyawaki.html  
 

“Why bio-imaging, i.e. real time fluorescence imaging?" Currently, this is a topic of great 
interest in the bioscience community. Many molecules involved in signal transduction have been 
identified, and the hierarchy among those molecules has also been elucidated. It is not uncommon 
to see a signal transduction diagram in which arrows are used to link molecules to show enzyme 
reactions and intermolecular interactions. To obtain a further understanding of a signal 
transduction system, however, the diagram must contain the three axes in space as well as a fourth 
dimension, time, because all events are controlled ingeniously in space and time. Since the 
isolation of green fluorescent protein (GFP) from the bioluminescent jellyfish in 1992 and later 
with its relatives, researchers have been awaiting the development of a tool, which enables the 
direct visualization of biological functions. This has been increasingly enhanced by the marriage 
of GFP with fluorescence resonance energy transfer (FRET) or fluorescence cross-correlation 
spectroscopy (FCCS), and is further expanded upon by the need for "post-genomic analyses." It is 
not my intent to discourage the trend seeking the visualization of biological function. I would like 
to propose that it is time to evaluate the true asset of "bio-imaging" for its potential and limitations 
in order to utilize and truly benefit from this novel technique.  

 
October 9 12:00-12:30 pm 
"Evolvability and hierarchy in rewired bacterial gene networks"  
Luis Serrano 
EMBL-CRG Systems Biology Programme, Centre for Genomic Regulation, Spain, 2. EMBL, 
Germany 
http://www-db.embl.de/jss/EmblGroupsHD/per_397.html  
 

Bacterial gene networks are highly plastic, allowing radical reconnections at the summit of the 



表 Y04 

gene network hierarchy, fuelling evolvability.Sequencing of genetic material from several 
organisms has revealed that duplication and drift of existing genes has primarily molded the 
contents of a given genome. Though the effect of knocking out or over-expressing a particular 
gene has been studied in many organisms, no study has systematically explored the effect of 
adding new links in a biological network. To explore network plasticity, we constructed 598 
recombinations of promoters (including regulatory regions) with different transcription or 
s-factors in Escherichia coli, over the genetic background of the wild-type. We found that ~95% of 
reconnected networks are tolerated by the bacterial cell and very few give different growth 
profiles. Expression levels correlate with the position of the factor in the wild-type network 
hierarchy. Most importantly, we find that certain combinations consistently survive over the 
wild-type under various selection pressures. This suggests that new links in the network could 
readily confer a fitness advantage to individuals in a population and hence may fuel evolution. 
 
October 10 9:00 – 9:30 am 
"Biological Large Scale Integration" 
Stephen Quake 
Dept of Bioengineering and (by courtesy) Applied Physics, Stanford University and Howard 
Hughes Medical Institute 
http://med.stanford.edu/profiles/Stephen_Quake/  
 

The integrated circuit revolution changed our lives by automating computational tasks on a 
grand scale. My group has been asking whether a similar revolution could be enabled by 
automating biological tasks. To that end, we have developed a method of fabricating very small 
plumbing devices – chips with small channels and valves that manipulate fluids containing 
biological molecules and cells, instead of the more familiar chips with wires and transistors that 
manipulate electrons. Using this technology, we have fabricated chips that have thousands of 
valves in an area of one square inch. We are using these chips in applications ranging from 
bioreactors to structural genomics to systems biology. However, there is also a substantial amount 
of basic physics to explore with these systems – the properties of fluids change dramatically as the 
working volume is scaled from milliliters to nanoliters. 

 Microfluid system 
 Large half-life of protein function 
 Biological dark matter – 99% of bacteria cannot be cultivate 

 
October 10 9:30-10:00 am 
"Dealing with the complexity of a 'simple' eukaryotic cell"  
Stephen G. Oliver 
Faculty of Life Sciences, The University of Manchester, U.K. 
http://www.ls.manchester.ac.uk/people/profile/index.asp?tb=0  

Systems biology aims at taking a more synthetic or holistic approach to deciphering the 
workings of living organisms. Although the ultimate aim is to construct mathematical models of 
complete cells or organisms that have both explanatory and predictive power, we are some way 
from achieving such global syntheses and we need a principled way of reducing the complexity of 
the problem. Accordingly, we require a top-down strategy to provide an initial coarse-grained 
model of the cell, and a bottom-up strategy in which individual sub-systems are modeled. 
  Metabolic Control Analysis (MCA) is a conceptual and mathematical formalism that models 
the relative contributions of individual effectors in a pathway to both the flux through the pathway 
and the concentrations of individual intermediates within it. To exploit MCA in an initial 
top-down systems analysis of the eukaryotic cell, two categories of experiments are required. In 
category 1 experiments, flux is changed and the impact on the levels of the direct and indirect 
products of gene action is measured. We have measured the impact of changing the flux on the 
transcriptome, proteome, and metabolome of Saccharomyces cerevisiae. In this whole-cell 



表 Y04 

analysis, flux equates to growth rate. In category 2 experiments, the levels of individual gene 
products are altered, and the impact on the flux is measured. We have used competition analyses 
between the complete set of heterozygous yeast deletion mutants to reveal genes encoding 
proteins with high flux control coefficients. 
  For the bottom-up approach, the initial problem is one of systems identification. While a lot of 
time is currently spent debating the question “What is Systems Biology?”, why (in an organism 
where we know so much about its biochemistry, physiology, and cell biology as S. cerevisiae) 
should it be a problem to identify the biological sub-systems that must be fully characterised and 
built into a comprehensive model of the eukaryotic cell? This problem arises because we have 
previously studied these biological systems in isolation and in a rigorously reductionist fashion. 
Now, we must study them as parts of an integrated whole. The problem is that our current view of, 
say, a metabolic or signal transduction pathway is often two-dimensional (rather than 
four-dimensional) and is frequently poorly integrated, if at all, with other cellular pathways. Thus 
our view of the network of metabolic pathways may not be the same as the yeast’s. In order to 
gain a “yeast’s eye view”, we have coupled flux balance analysis with both metabolomics and 
genetics. Although the initial aim of these approaches is the identification of the ‘natural’ 
metabolic systems of yeast, the principles involved should be more widely applicable to the 
problem of biological systems identification. 
 
October 10, 2 pm 
“System level analysis and engineering of industrial bacteria” 
Sang Yup Lee, KAIST 

 Choose two genes from microarray late stage  rise metabolite production 
 Leptin production – Serine-rich production increase interlukin 
 Enhanced production of recombination protein (patent) 
 Silver Cell research at MBEL and Bic 
 http://webcell.org 
 MetaFluxNet v1.8 
 Succinic acid productin increased by 4o times (US$ 550 million market) 

 
References 
[1]  Appl. Environ. Microbial (2003), 69, 5772 
[2]  Trends in Biotechnoloy (2005), 23, 349 
[3]  Curr. Opin. Biotech (06), 17, 488 
 
"Metabolome Analysis and Synthetic Biology" 
Masaru Tomita (Keio University) 
Keio University was founded by Yukichi Fukuzawa (appeared on the ￥10000 dollar notes) 

 Metabolome analysis of AAP hepatoxicity in mouse liver 
 Multi-omics  synethic biology 
 Metabolic – CE/TOF-MS 
 Fluxome – GC/MS – NMR, GC/TOF 
 Proteome – shotgun, 2D gel 
 Transcriptome – RT-PCR 
 Merge two genomes – Bacillus 
 Artificial operons – order of genes is important, Itaya et al. 
 Metabloome factory – Tsuruoka 
 In vitro enzyme rate constant (usually work at the maximum rate) is not equal in vivo 

 
References 
[1]  PNAS (2005) 102, 15971 
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"A Systems Biology Approach to Identify and Therapeutically Exploit the Weakness of the 
Robust Tumour Metabolism" 
Marta Cascante (University of Barcelona) 

 Genomoics, transcriptomics, proteomics, interactomics, fluxics, metabolics 
 Metabolic adaptation support cell function 
 Design metabolites intercention in drug development need metabolic flux map 
 Isotopomer analysis plus kinetic model 
 Metabolic changes associates to cell transfer induced by oncogenes 
 Disrupt metabolic to test the robustness of cancer cell 

 
References 
[1] Trends in Biotech. (2005) 16, 350. 
 
 
Oct. 11  9:15am 
Jack Donald Keene (Duke University Medical Center) 
"Coordination of Gene Expression by RNA Operons" 

 DNA operons and regulons 
 Bacteria lack nucleus  efficient in transcription and transcription 
 RBPS – S. cerevisiae 200 TFs, 560+ RBP, H. sapiens 1500+TFs, 3500+ RBP 
 Robust, resilent, rewireable 
 Intra-pathway PPI, inter-pathway PPI 
 Coordination of PT gene expression 
 Polycistronic operons 

 
References 
[1]  Keene and Tenenbaum Mol. Cell (2002) 
[2]  Sci. (2005), Sep. 2. 
 
 
Kenneth Alan Loparo (Case Western Research University) 
"Applications of Complex Systems Biology to the Study of Neural Systems "  

 Plasticity and activity dependent development 
 Neural plasticity is a dynamic process by which the brain develop 
 Affect by nature (GP), nurture (environment stimulus), niche (e.g. development) 
 Brain development  first five years are most critical 
 Synapses first three years, connect neurons 
 Gene  phenotype  environment (EGG, heart rate, blood pressure, temperature) 
 By NMR imaging  connective 
 Measure of brain connectivity and complexity using EEG 
 Brain as a dynamics system 
 Attractor geometry  periodic, Quasi-period, chaotic 
 Correlation intergral, dimension of the integral has a power law  
 Unfold the attractor  
 Embedding the attractor 

 mapping that preserve the information 
 plasticity an activity dependent dynamics process in decoupling organism 
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Oct. 11  11:00 – 12:30 am 
Control and System Theory for Systems Biology - Oct. 11th, 11:00-12:30  
 
"Robustness Analysis of Biological Networks Using Sensitivity Measures"  
Francis J. Doyle (University of California, Santa Barbara)  

 The wisdom of the body 1932 
 Nebert Wiener 1948 
 Mr. Black at IBM, develop negative FB loop device 
 Chemotaxis, HSP, MAPK, signal transduction 
 Attributes - intrinsic – unmodeled effect – transcription, transcription signal transduction, 

extrinsic – disturbance 
 Analysis – sensitivity analysis – determine the change δ induced by initial condition on the 

prediction model (ODE, PDE) 
 Linear analysis – positive or negative FBL, redundant loop, time delay, gain modulator, 

hierarchical, multi-scale system analysis (length and time) 
 Need a metric for robustness performance 
 Phase as a metric – do phase sensitivity analysis (Pittendrigh and Gaan 1976) 
 Need to consider stochastic performance 
 Isolated cell are terrible clock ! 

References 
[1]  Begheri, Stelling and Doyle, Biol. Rynthm Res. 
[2]  Mirsky, Stelling and Doyle (2006) 
[3]  Herzog (2004) 
 
"Feedback Control Regulation of Cell Division"  
Pablo A. Iglesias (Johns Hopkins University) 

 Chemotaxis –a temporal sensing strategy (smell, high concentration, move) 
 6 to 10 flagellar/cell  rotatory motor 
 Uses a biased random walk, clockwise  flagellar apart then stay randomly, anti-clockwise 

 flageller come close and travel in a straight line 
 Barkai, Leibier paper  property of perfect adaptation is robust, initial concentration 

increased by  50 times the system still stay robust 
 To determine the direction of move, need to known the rate change of concentration with 

time 
 Kalman filter theory 

 
"The architecture of cellular regulation" 
John Doyle (California Institute of Technology) 

 Rule of interaction is not module 
 Thermodynamics, communication, control and computation 
 Few polymerase which can eat ~20 same things (no variety) 
 ~10000 proteins give rise to huge variety 
 Robust and yet fragile 
 Flexible metabolism obesity and diabetic 
 Regenerate         cancer 
 Advance technology castrographic 
 Virus NFkB, toxity 
 Bowtie architecture – long-time and short-time scale 
 Computing protocols for evolution 
 Evolving of architecture (like internet) 
 Circadian clock in a bacteria 
 How to compare architecture 
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Oct. 11th, 14:00-16:30 
Signal Transduction -  
Chairs: Philippe Bastiaens (EMBL Heidelberg), Boris Kholodenko (Thomas Jefferson 
Univ.), Shinya Kuroda (Univ. of Tokyo)  
 
"Emerging Principles of Living Systems "  
Hans V. Westerhoff (The University of Manchester) 
 

 Emerging principle is a theory for tradeoff between robustness 
 Robustness is conserved ? 
 Definition of robustness ? 
 Robustness and fragility 
 Robustness is a function 
 Definition – frequency domain (phase) 
 Homogeneous robustness – average robustness is lower 
 Heterogeneous robustness – average robustness is lower 
 Another question is to which is this perturbation that signal transduction pathways change ? 
 Normal fragility to cancer to robustness 

 
William S. Hlavacek (Los Alamos National Laboratory) 
"Rules for Modeling Signal-Transduction Systems"  
 

 Problem of combinatorial complexity 
 Rule-based model 
 EGFR multiplicity of site and binding partners to combinatorial complexity 
 For example: 9 sites is equal to 29 = 512 sites 
 Each site has more than one binding partner, that is 39 states 
 Protein inhibits dimmer breaking, no protein monomer 
 Develop a tool – BioNetGen2 
 Five proteins in EGFR (edge bonding is either intra or inter bonding) 
 Epitope – trivalent ligand with a bivalent cell surface receptor 
 23 reactions, 21 metabolites can give rise to 622 isotopomer fraction 

 
References 
[1]  Faeder (2005) Proc. ACM 
[2]  Blinov (2005) Proc, BopCONCUR 
[3]  Blinov (2006) Biosystems 
 
Philippe Bastiaens (EMBL Heidelberg) 
"Reaction cycles in the spatial and temporal organization of cell signaling" 
 

 RAN GTP gradient in the self-organization of mitotic spindle 
 Spatial heterogeneity of tryosin receptor 

E + S = ES  E + P 
 Advantages are specificity, localization, intrinsic kinetic and parameters 
 Measure ES by FRET in vitro 
 Imaging of ES in cell 
 Observed the complex of ES for a long time by depolarization the complex 
 Steady state of ES in cells  k1(1-α)S – (k-1 + k2)α = 0  
 k2 is the same as kcat 
 Km = (k-1 + k2)/ k-1 = (1 – α )S/ α 
 Signal permission region and signal terminating region 



表 Y04 

 
三、考察參觀活動(無是項活動者省略) 

Null 
 
四、建議 

In summary, the workshop was taken place at the Pacifico Yokohama building at Yokohama, 
and had a lot of discussions.  The level and quality of the talks are very good. The talk gave by 
Marc Vidal is extremely good. I strongly recommend one should understand his work as 
thoroughly as possible if anyone want to do system biology research. His work is a 
ground-breaking work. 
 

五、攜回資料名稱及內容 

資料名稱:  
(1) ICSB-2006 programme 
(2) ICSB-2006 abstract CD 
 

六、其他 
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報告內容應包括下列各項： 

七、參加會議經過 
Jan. 14 

I attended three tutorials, which is listed in the following; 
 Tutorial 1: Guilt by Association: A Tutorial on Protein Function Inference 

Prof. Limsoon Wong 
 Tutorial2: Clinical Proteomics and Biomaker Discovery - Usage and Abusage 

of Bioinformatics Tools 
Prof. Zhen Zhang 

 Tutorial 3: Introduction to Phylogenetic Networks 
Prof. Daniel H. Huson 

Jan. 15  attended session 1 – communities, motifs, and session 2 – biclustering and 
the micro-array talks 

Jan. 16  attended session 4 –structure prediction and comparison, and session 5 – 
mapping and disease talks 
*Poster presentation at 15:00 p.m.: 

Jan. 17  attended session 7 –biological network, and session 8 – MS, protein-protein 
interaction talks  

 
八、與會心得 

The Asia-Pacific Bioinformatics Conference 2007 is an annual forum for exploring 
research, development and novel applications of Bioinformatics which is held at the 
University of Hong Kong, from Jan. 14 to 17. 

The scientific program of APBC 2007 included 3 keynote talks, 3 tutorials, 35 oral 
presentations, 112 poster presentations and a HP industrial sessions as well. 

The symposium has received 104 papers and each submitted paper was reviewed.  All 
accepted papers had at least 2 positive recommendations.  The program committee accepts 
approximately 33% of papers, that is a total of 35 papers.  A variety of papers was 
presented at this conference and the topics include protein structures study, motif search, 
micro-array analysis, proteomics, pathways, networks and evolution study.   

I had two poster presentation on Jan. 16, 15:00 p.m. Title of my two posters 
presentation are “Applications of Domain-Domain Interaction in Pathways Study ”, and 
“Predicting Putative Human Mirna Precursor Candidates Associated with Promoter Regions 
and CpG Islands ”. On the other hand, I had attended most of the talks during the four days 
conferences. 

In my personal opinion, bioinformatics researches are growing very rapidly, and it is 
moving into the areas such as data integration, gene micro-array analysis, proteomics and 
system biology. There are several good tutorials, talks and posters presented in this 
conference.  I will highlight their main interesting results in below. 
 
Jan. 15, 2007 
Keynote: Exploring Genomes of Distantly Related Mammals  

Prof. Jennifer A. Marshall Graves 
Professor 
ARC Center for Kangaroo Genomics, Research school of Biological Sciences 
Australian National University 

 Physical mapping – FISH, BAC, orthologs 
 Linkage mapping – markers 
 Evolution – MHC locus, framework gene class (I, II, III) 
 Marsupial – anti-body, milk-commercial products 
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 Centerome (few recombination) 
 
session 1 – communities, motifs talks  
Metagenome Analysis using Megan 
by Daniel Huson, Alexander Auch, Ji Qi, Stephan Schuster  
Subtle Motif Discovery for Detection of DNA Regulatory Sites 
by Matteo Comin, Laxmi Parida  

 Metagenomics – study of the DNA of uncultured organism 
 Sargasso sea – 1.2 million new genes 

 
Algorithmic Approaches to Selecting Control Clonesin DNA Array Hybridization 
Experiments 
by Qi Fu, Elizabeth Bent, James Borneman, Marek Chrobak, Neal Young  

 rRNA control probe  
 BCP – back covering problem is NP complete 

 
Subtle Motif Discovery for Detection of DNA Regulatory Sites 
by Matteo Comin, Laxmi Parida 

 Make use of MSA of TFBS 
 Take into account of noise, such as indel and mutation 
 Take a TFBS with length 15, 4 mutations for each 600 bp 
 Known approaches include: exact enumeration schema, inexact (sub-motif 

enumeration), combinatorial algorithm (map to a clique problem), statistical learning 
problem (gibbs sampling problem), indel consensus problem 

 Modular approach, step 1: identify potential signal which allow variable length 
(PROSITE), step 2: local search of gap length is variable, that is alignment of potential 
signal 

 Problem of extensible motif can be solved by assigning a probability 
 
An Effiective Promoter Detection Method using the Adaboost Algorithm 
by Xudong Xie, Shuanhu Wu, Kin-Man Lam, Hong Yan 

 The authors start with using 5-mer (that is 1024 possibilities) 
 Apply Bayer rule 
 Rank the occurrence of 5-mer 

1 CGGCC 
2 GCGCG 
3 GCGGC 
4 .. 
5 .. 
… 

 65% of binding sites are CG rich regions 
 Several features can be employed to do the search 
 Number of 5-mers 
 Position of CpG islands 
 DNA sequences 
 Test of capability of exact TSS localization 
 Define (GC)p = %C + %G > 50% 
 Experimental to observe ration > 0.6 for a region longer than 200 bp 
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session 2 – biclustering and the micro-array talks 
A New Strategy of Geometrical Biclustering for Microarray Data Analysis 
by Hongya Zhao, Alan W. C. Liew, Hong Yan 

 How to classify a subset of genes and a subset of conditions 
 NP hard problem 
 First do a bicluster (Br) in column pair space, then merge Br into maximal cluster 

 
Using Formal Concept Analysis for Microarray Data Comparison 
by Vicky Choi, Yang Huang, Vy Lam, Dustin Potter, Reinhard Laubenbacher, Karen Duca 

 FCA is first proposed by Rudolf Wille, see FCA: mathematical concepts 
 Consider objects (girl, women, boy) with certain attributes (different names but same 

things) 
 Concept lattice, bipartite clique 

    1   2    3   4 
a   0   0    1    1  
b   1   0    0    1 
c   1   0    1    0 
d..... 

 bipartite clique {(a), {1,3}} 
 maximal  bipartite clique ({a,c},{ !,3}) 
 partial order – Galois lattice) 
 comparing lattices 
 gene expression + PROSITE motifs 
 8 discrete gene expression values and 21 PROSITE motifs 
 Common sublattices 
 Define global differential expression 
 Lattice decomposition and sublattices – more biological related attributes 

 
An Efficient Biclustering Algorithm for Finding Genes with Similar Patterns in Time-series 
Expression Data 
by Sara Madeira, Arlindo Oliveira 

 3 biocluster  3 biological processes 
 S = (D N U) = (down no-change up) 
 Generalize suffix tree 
 Maximal = CCC-bicluster, (left, right) maximal 
 Gene = (g1, g2 g3 …), condition = (D N U …..), motif = (D1, N2, U3, U4, N5) 

 
Selecting Genes with Dissimilar Discrimination Strength for Sample Class Prediction 
by Zhipeng Cai, Randy Goebel, Mohammad Salavatipour, Yi Shi, Lizhe Xu, Guohui Lin 

 Similar gene expression level does not give useful information 
 Gene selection methods carefully define a function to score the differential levels of 

gene expression inder a varity of conditions, in order to identify top-ranked genes 
 Such method suffer because some genes have very similar expression patterns so using 

them all in classification is largely redundant 
 These genes can prevent the consideration of other individually-less but 

collectively-more differentially expressed genes 
 The authors proposed to cluster genes in terms of their class discrimination strength and 

to limit the number of selected genes per cluster 
 The authors showed by experiments on two cancer microarray datasets that their 

methods identify gene subsets which collectively have significantly higher 
classification accuracies 

Attended the poster session. 
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Jan. 16, 2007 
Keynote: Protein Identification via Spectral Networks Analysis 
Prof. Pavel Pevzner 
Ronald R. Taylor Professor of Computer Science 
Department of Computer Science & Engineering 
University of California, San Diego 

 PTM is important, more than 600 PTM are known 
 Positive identification via spectral network analysis 
 Human eyes lens – cataracts 
 PTM of aged protein accumulate 
 GPFN cot fragments (kDa) 
 Spectrum of mass + noise 
 Cut at peptide bond, H2O, NH3 
 Identify position and intensity 
 A modified petide at most k mutation/modification apart from the database 
 Compare 1 million spectra with database 
 Search the MS/MS without look at 99.9% of the database – find similarity 
 Search the MS/MS without compare the spectra database 
 Denote PTM (increase the mass in MS/MS), use zero to denote such peak 
 Edit distance/alignment problem (prefix/suffix) 
 Spectral alignment = east-west TSP 
 De novo without error 
 Identify 6 new PTM 
 PTM  polymorphism (A-Bruijn graph) 

 
session 4 –structure prediction and comparison talks  
Protein Structure-Structure Alignment with Discrete Frechet Distance 
by Minghui Jiang, Ying Xu, Binhai Zhu  

 Treat protein sequence as a polygonal chain (use of Frechet Distance, FD) 
 Hausdorff distance is useful for matchibg two point sets 
 The discrete Frechet distance closely approximates the (continuous) Frechet distance 

and is a natural measure for the geometric similarity of the folded 3D structures of 
proteins 

 New algorithms are proposed for matching two polygonal chains in 2D to minimize 
their discrete FD under translation and rotation and an effective heuristic for matching 
two polygonal chains in 3D structure-structure alignment 

 FD can be computed by dynamic programming |Bj| > |Ai| = 1, where A and B are two 
sets of points 

 
Deriving Protein Structure Topology from the Helix Skeletion in Low Resolution Density 
Map using Rosetta 
by Yonggang Lu, Jing He, Charlie Strauss 

 Electron cryo-microarray is an experimental technique to determine the 3D structure 
for large protein complexes 

 Able to generate protein density maps at 6 to 9 A 
 Secondary structures such as alpha-helix and beta-sheet can be visualized from these 

maps, but there is no mature approach to deduce their tertiary topology, the linear order 
of the secondary structures (SS) on the sequences 

 Given N SS, the number of possible orders is N!(2N) 
 The authors develop a method to predict the topology of the SS using ab initio structure 

prediction 
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 The rosetta structure prediction algorithm was used to make sequence based structure 
predications for the protein 

 Then screened the models produced by Rosetta for agreement with the helix skeleton 
derived from the density map 

 For most of those true-positive assignments, the alignment was accurate to within 2 
amino-acids in the sequences 

 
Fitting Protein Chains to Cubic Lattice is NP-Complete 
by Jan Manuch, Daya Gaur 

 It is known that folding a protein chain into the cubic lattice is an NP-complete 
problem. Given a 3D fold of a protein chain (the alpha carbon coordinates), the authors 
want to find the closest lattice approximation fo this fold. This problem has been 
studied under names such as “lattice approximation of a protein chain”, “the protein 
chain fitting problem” and “building protein lattice models”. The authors show that this 
problem is NP-complete for the cubic lattice with side 3.8A and the coordinate root 
mean-square deviation. 

 
Inferring a Chemical Structure from a Feature Vector Based on Frequency of Labeled Paths 
and Small Fragments 
by Tatsuya Akutsu, Daiji Fukagawa 

 This paper proposes algorithms for inferring a chemical structure form a feature vector 
based on frequency of labeled paths and small fragments, where this inference problem 
has a potential application to druh design. 

 Chemical structures are modeled as trees or tree-like structures. 
 The inference problems for these kinds of structures can be solved in polynomial time 

using dynamic programming-based algorithms. A branch-bound type algorithm is also 
proposed. 

 The result suggests that the algorithm can solve the inference problem in a few or 
few-tens of seconds for moderate size chemical compounds. 

 
session 5 – mapping and disease talks 
Exact and Heuristic Approaches for Identifying Disease-Associated SNP Motifs 
by Gaofeng Huang, Peter Jeavons, and Dominic Kwiatkowski 

 Some combinations of SNPs in the human genome are known to increase the risk of 
certain complex genetic diseases. The authors formulates the problem of identifying 
such disease-associated SNP  motifs as a combinatorial optimization problem and 
shows it to be NP-hard. Computational results are given to demonstrate that these 
approaches are sufficiently effective to support ongoing biological research. 

 
Genotype-Based Case-Control Analysis, Violation of Hardy-Weinberg Equilibrium, and 
Phase Diagrams 
by Young Ju Suh, Wentian Li 

 The author study in detail a particular statistical method in genetic case-control 
analysis, labeled genotype-based association, in which the two test results form 
assuming dominant and recessive model are combined in one optimal output. 

 
Attended the poster session. 
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Jan. 18, 2007 

Keynote: Bugs, Guts and Fat - a Systems Approach to the Metabolic 'Axis of Evil'  
Prof. Joe Nadeau 
Chair/Professor 
Department of Genetics 
School of Medicine 
Case Western Reserve University 

 

session 7 –biological network talks 
Infering Gene Regulatory Networks by Machine Learning Methods 
by Jochen Supper, Holger Fröhlich, Christian Spieth, Andreas Dräger, Andreas Zell 

 The authors critically evaluate the application of multiple linear regression, SVMs, decision 
trees and Bayesian networks to reconstruct the budding yeast cell cycle network. The 
performance of these methods is assessed by comparing the topology of the reconstructed 
models to a validation network. This validation network is defined as a priori and each 
interaction is specified by at least one publication. The author also investigate the quality fo 
the network reconstruction if a varying amount of gene regulatory dependencies is provided a 
priori. 

A Novel Clustering Method for Analysis of Biological Networks Using Maximal Components of 
Graphs 
by Morihiro Hayashida, Tatsuya Akutsu, Hiroshi Nagamochi 

 The authors proposed a novel clustering method for analyzing biological networks, in this 
method, each biological network is treated as an undirected graph and edges are weighted 
based on similarities of nodes. Then, maximal components, which are defined based on edge 
connectivity, are computed and the nodes are partitioned into clusters by selecting disjoint 
maximal components. The proposed method was applied t clustering of protein sequences 
and was compared with conventional clustering methods. The obtained clusters were 
evaluated using p-values for GO terms, the average p-values for the proposed method were 
better than those for other methods. 

 
Gene Regulatory Network Inference via Regression Based Topological Refinement 
by Jochen Supper, Holger Fröhlich, Andreas Zell 

 Starting from a priori specified network topologies, the authors identify those parts of the 
network which are relevant for the gene experiment data. For this propose, the authors 
employed linear ridge regression to predict the expression level of a given gene from its 
relevant regulators with high reliability. Calculated statistical significances of the resulting 
network topologies reveal that slight modifications of the pruned regulatory network enable 
an additional substantial improvement. 

Algorithm Engineering for Color-Coding to Facilitate Signaling Pathway Detection 
by Falk Hüffner, Sebastian Wernicke, Thomas Zichner 

 To identify linear signaling pathways, Scott et al . recently proposed to extract paths with 
high interaction probabilities from protein interaction networks. They used an algorithmic 
technique known as color-coding to solve this NP-hard problem, their implementation is 
capbable of finding biologically meaningful pathways of length up to 10 proteins within 
hours. In this presentation, the authors give various novel algorithmic, improvements for 
color-coding. Experiments on the interaction networks of yeast and fruit fly as well as a 
testbed of structurally comparable random networks demonstrate a speedup of the algorithm 
by orders of magnitude. 
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session 8 – MS, protein-protein interaction talks 
De Novo Peptide Sequencing for Mass Spectra Based on Multi-Charge Strong Tags 
by Kang Ning, Ket Fah Chong, Hon Wai Leong 

 The authors presents an improved algorithm for de novo sequencing of multi-charge mass 
spectra. A simple de novo algorithm, called GBST (greedy algorithm with best strong tag) 
was proposed and was shown to produce good results for spectra with charge larger than two.

 

Complexities and Algorithms for Glycan Structure Sequencing using Tandem Mass Spectrometry 
by Baozhen Shan, Bin Ma, Kaizhong Zhang, Gilles Lajoie 

 The authors showed that glycan de novo sequencing is NP-hard. The authors provide a 
heuristic algorithm and develop a software program to solve the problem in practical case. 
Experiments on real MS/MS data of glycopeptides demonstrate that the authors’ heuristic 
algorithm gives satisfactory results on practical data. 

 

Semi-supervised Pattern Learning for Extracting Relations from Bioscience Texts 
by Shilin Ding, Minlie Huang, Xiaoyan Zhu 

 The authors proposed a semi-supervised model to combine both unlabeled and labeled data 
for the pattern learning procedure. First a large amount of unlabeled data is used to generate a 
raw pattern set. Then it is refined in the evaluating phase by incorporating the domain 
knowledge provided by a relatively small labeled data. It is showed that labeled data when 
used in conjunction with the unlabeled data can considerably improve the learning accuracy. 

 

Flow Model of the Protein-protein Interaction Network for Finding Credible Interactions 
by Masanori Arita, Kiyoshi Asai, Kinya Okada 

 The authors proposed the relative reliability score for protein-protein interaction (PPI) as an 
intrinsic characteristic of global topology in the PPI network. The score is calculated as the 
dominant eigenvector of an adjacency matrix and represents the steady state of the network 
flow. By using this reliability score as  cut-off threshold from noisy Y2H PPI data, the 
credible interactions were extracted with better or comparable performance of previously 
proposed methods which were also based on the network topology. 

 
九、考察參觀活動(無是項活動者省略) 

    無 

十、建議 

In summary, the symposium had a lot of discussions.  The level and quality of the talks are 
very good. The organizer had done a very good job in organizing the conference.   

十一、 攜回資料名稱及內容 

資料名稱:  
(1) Proceedings of the Fifth Asia-Pacific Bioinformatics Conference, and 
(2) Poster abstract - The Fifth Asia-Pacific Bioinformatics Conference.  

十二、 其他 
    無 
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報告內容應包括下列各項： 

十三、 參加會議經過 

July 22 
 Attended the Keynote session 
 Attended the morning sessions 
 Attended the afternoon sessions 

July 23  
 Attended the Keynote session 
 Attended the morning sessions 
 Attended the afternoon sessions  

July 24  
 Attended the morning sessions 
 Attended the afternoon sessions 

  July 25 
 Attended the Keynote session 
 Attended the morning sessions 
 Attended the afternoon sessions 

       
十四、 與會心得 

This year the ISMB/ECCB07 conference was held at Vienna, Austria The conference 
comprises a broad area of topics in the area of computational biology. 
Topics include,  
• Protein-protein interaction (PPI) systems biology and pathways reconstruction 
• microRNA, nc-RNA 
• MAPK Signal transduction pathways 
• Integration of microarray data, genome sequences, and PPI data 
• PPI and evolution  
• Host-pathogen PPI prediction 
• Systems Neuroscience  
 

I had a poster presentation from July 22 till 25. The title of my poster presentation was 
CpG-island proximal microRNA genes  

There were many interesting and good talks presented in this conference. I highlighted their 
main interesting results in below. 
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July 22 8:30 am  
“Dissecting transcriptional network structure and function” 
Erin K. O’Shea 
 

 Under transcription factors (TFs) regulation mechanisms 
 TFs – TFBS have different sensitivity, cooperative levels 

                TF1           TF2 
            |  |  |          |  |   |  
  Signal_1  +  +  0        +  +  - 
  Signal_2  -  +  0         -  +  - 
Signal_1_2  +  +  0        +  +  - 

 build transcription network 
 

 Structure with a signal and trace the influence through TFs 
 Mutant cycle approach – (i) measure the influence of each TF with significant and (ii) 

identify a quantity 
 Yeast – salt stress and TM stress, involve the HOG1 TF 
 In cytoplasm – HOG1 translocate into nucleus where it affects a lot of other TFs, such as 

msn2/4, sko1, hot1,msn1, smp1  up/down about 300 genes 
 The question they want to solve is to measure the cooperative effect of signal one and two, 

which is not simply the sum of both signal, that is a non-linear effect 
 The effects (stress response) can be described by the Boolean logic language – OR, AND 

gate 
 
July 22 9:30 am 
“Inferelator: learning predictive dynamic regulatory networks from heterogeneous data” 
R. Bonneau 
 
System architecture – cMonkey, do a bicluster, find bicluster motif, combine with Inferelator to 
predict the gene regulation network (GRN) 
Co-regulator information is better than co-expression information 
Associated regulon 
cMonkey – make use EM algorithm, (i) do a single bicluster iteration, (ii) solve the differential 
equation for steady state (use linear model or logistic model) 
 
July 22 10:00 am 
"Redefining nodes and edges: relating 3D structures to protein networks provides 
evolutionary insights"  
P. Kim, Yale University 
 

 PIN – determined by TAP-tagging, Y2H experiments 
 Hubs – data hubs and party hubs 
 Data hubs – interact at different space and time 
 Party hubs – co-express at the same space and time 
 Hubs are essential and slow evolve 
 Define the single-interface network (SI), multi-interface network (MI) 
 Do a PDB homology map of the PIN 
 Degree centrality – different subcellular localization (SL) 
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July 22 10:50 am 
"Identification of functional modules from conserved ancestral proten-protein interactions" 
J. Dutkowski 
 
Comparative genomic – across species, there are conserved subnetworks 
Cluster – protein complexes 
Conserved interaction modules – evolve together 
Path length – common signal network 
Clustering of protein with high e-value of BLAST 
Model – duplication (local), speciation (global) 
Define the probability of interaction, and probability of new species, then construct the Bayersian 
network 
 
July 22 11:20am 
"Functional annotation of regulatory pathways"  
M. Koyuturk, koyuturk@gmail.com 
 

 Study GRN in A. thaliana, flowering time 
 Synthetic gene array network (SGA), Tong et al . Sci. 2004 
 From gene space to function space 
 Define topological parameters in function space and build the functional network 
 Reduce complexity – short circuit TFs, DNA binding nodes, and get common functional 

attributes 
 NARADA – http://www.cs.purdue.edu/homes/jpandey/narada 
 One can also consturcut GRN from the Regulon DB 
 The idea is from function-function network, do a short circuit, get a new view of the GRN 

 
July 22 11:50 am 
“supervised reconstruction of biological networks with local models” 
K. Bleakley 

 Unsupervised method, model based graph, do a BLAST search 
 Supervised method – SVM  
 Assign a 23 bit vector to a protein, such as similarity features 
 Build a network – functional related (+1), fixed one node and do the learning process 
 Put a boundary between functional related and not functional related network 
 Advantages of local model – fast, focus on a subnetwork, easy extend to direct graph 
 Disadvantages of local model – two new protein no simple way to predict there is an edge 
 False discovery rate (FDR) – among the positive which one is negative (false) 
 The model has a very good FDR power, for example among 20000 edges only 1000 edges 

is false 
 Strong positive for FP is good candidate for missing 

 
July 22 1:30 pm - Keynote 
"understanding interactions by data integration" 
S. Brunak (Technical University of Denmark) 
 

 Beyond one gene cell cycle, cell cycle protein have very different sequences but interact at 
the same phase 

 Benchmark data before integration 
 Temporal interaction network are just in time, adding cell cycle metabolome data 
 Protein degradation 
 What do species do in between regulation, transcription regulation (TR) is poorly conserved 
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 Protein complex activate at the right time 
 TR is conserved at the level of protein complex rather than conserved at single protein 
 Disease interactomes – ranking protein complexes, identify new disease genes 
 Phenome – interactome network 

 
 
July 22 2:30 pm 
"An ensemble framework for clustering PPIN" 
S. Asur 

 Non-uniform degree distribution is hard to apply clustering 
 Ensemble clustering – based on different topology to classify 
 Different criteria clustering – single cluster 
 Topology parameter – clustering coefficient 
 Shortest path betweenees is global topological properties 
 Consensus clustering – agglomerative, soft hierarchical clustering allow multiple classes 
 Topological modularity, domain-based measure 
 Validate the measure 
 PCA based consensus method is better than other type of classifying methods 

 
July 22 3:50 pm 
"EMBOSS" by EBI 

 A EBI open software suite 
 
July 22 4:20 pm 
"comparative genomics of translation regulation in yeast "  
P. Yitzhak 

 Study tRNA abundance verses tRNA gene copy 
 Build a translation efficiency matrix 
 Look at the ribosomal protein 
 Study the yeast frozen tRNA pool 
 Study fungi – such yeast, S. pombe 
 Relative level of translation/relative level of transcription ~ noise residue 

 
July 22 4:50 pm 
"a graph-based approach to systematically reconstruct human transcriptional regulatory 
modules"  
X. Yan 

 Coexpression network – a multigraph problem simplified to a single graph with weight on 
the edges 

 Summary graph – noise edge problem, due with the bionomial distribution 
 Graph = random graph + real graph 
 NeMo – a graph-based approach 

 
July 22 5:20 pm 
"systematic discovery of functional modules and context-specific functional annotatin of 
human genome"  
Y. Huang 

 EBI ArrayExpress ~ 55000 experiments, GEO ~ 137231 experiments 
 Multiple samples – reduce noise (gene expression levels) 
 Problem – different file formats 
 From microarray data to coexpression network to recurrent pattern to functional annoation 
 Problem is the 65 microarray data set has more than 1 million rows 
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 Simplify by define S = p + p*p  + p*p*p + ….. 
 If less than 3, it is a local area 

 
July 22 5:50 pm 
"understanding and expliting the evolution of the sequences that control gene expression" 
M. Eisen (UC, Berkeley) 
 

 Binding site clusters conserved is more useful 
 TFBS – mutation is easy to erase their function 
 Fly regulatory sequences are amazing pastic 
 The TFBS they contain can be completely rearrangement but the function still remain 
 Consider enhancer elements, miRNA genes 
 Conservation is not equal to funciton 

 
July 23 8:45 am 
Interaction networks probed by mass spectromeety 
Anne-Claude Gavin, EMBL 
 

 Study PPI in Hs. Syndromes 
 Protein could has many functions – genetic pleiotropy 
 Near every process is carried by more than ten protein subunits – protein complex also 

conserved, such as ARP2/3 complex 
 Protein complexes are dynamic (TNFa), drug induced complexes 
 Predict protein complex – cooperative effects (not just binary information), alleosteric effect 
 Study protein complexes in Sc. (yeast) 
 Qt – SNARE complex 
 Quantity protein social affinity, two models; (i) spoke model, (ii) matrix model (Core 

component with attachment) 
 Modules – groups of protein present in more than one complex 
 Discrete organization – architecture of protein complex 
 A molecular framework of phenotype data 
 Mutation of protein complex gives same phenotype 
 Conclusion: (1) more than 80% proteins are belong to protein complexes, (2) a protein 

complex has more than 40% proteins belong to a protein complex, and (3) social affine index 
is a useful measure 

 
July 23 9:30 am 
Genetic networks: inferring pathways by computational perturbation 
F. Roth 
 

 Synstematic genetic inference 
 Study DNA damage, identify mutant sensitivity to MMS, measure the cell thickness 
 Define fitness(W)=growth rate in mutant/growth rate in WT=doubling time in 

mutant/doubling time in WT 
 They pick the product model, define e = Wxy – WxWy 
 Non-interacting, e = 0  
 Synergenetic e < 0 
 Alleviating e > 0 
 Classify alleviating interaction by drug response, S = response with drug/response without 

drug 
 Final link to GO terms 
 Genetic interaction prediction from relationships 
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 Reconstruction of DNA repair pathway 
 Most functional links are alleviating – pathway order 
 Co-equal interaction to cohesive pair 
 Alleviating interaction implies pathway order 

 
July 23 10:00 am 
Domain-domain interactions (DDI) are evolutionary conserved 
Z. Itzhaki 
 

 Reference: BMC genome biology, 7, R125 
 Protein PSM has a domain PDZ, IL16 has two domains, PDZ, PDZ 
 Unstructured region (Transient interaction) and structure motif (stable interaction) 
 Databases: 3D1D, iPfam, an overlap of 2983 DDI 
 Statistical analysis of DDI 
 Create 1000 random PPI network and count the PPI due to DDI, then set a p-value 
 BioGrid + DIP + InterAct 
 Study the following speces: Ec, Sc, Ce, Dm and Hs 
 Why some DDI are more conserve, others are less 
 DDI are more conserved than PPI 
 Estimate the number of DDI non-conserved due to incomplete PPI 

 
July 23 1:30 pm 
Dissecting transcriptional network structure and function 
Eran Segal 
 

 Develop a mechanistic model of transcription control (TC) 
 Cluster of TFBS (weak or strong), cooperative, quenching 
 Fly model (maternal genes, gap genes, pan-rule genes) 
 How CRM compute expression pattern ? Input – different combinations – different 

expression patterns 
 Integrate factor concentration and binding energy 
 Model binding competition through steric hinderance 
 Allow contribution from both weak and strong sites 
 Two parameters of the models: absolute concentration parameter, expression concentration 

parameter 
 Predict expression profile, measured profile (fitting parameter for all CRM) 
 Only account for 80% of the cases 
 Given the sequence to predict the expression profile 
 A model of design principle of segmentation  
 Are modules densely populates with factor ? both strong and weak sites contribute 
 TFBS same TF tend to cluster 
 Nucleosome position is important, di-nucleotide AA/TT/TA for DNA binding 
 Nucleosome signal is highly conserved across species 

 
July 23 2:30 pm 
The relationship among sequence diversity, coevolution, and specificity in protein interactions 
S. Lovell 
 
Reference: PNAS (2007) 104, p. 7999 
The plot of shared interaction against sequence identities show that there is no correlation al tall 
Pairwise with one member show accelerated evolution 
PDB to SCOP, co-evolution and co-adaptation 
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Do MSA – construct the mirror tree 
Study protesome, co-evolution, correlated evolution, site-specific co-evolution 
 
 
 
July 23 3:50 pm 
Large scale mapping of human protein-protein interactions by mass spectrometry 
T. Topaloglou 
 

 6400+ PPI among 22000 proteins 
 Reference System biology 3, article 89 
 Data available InterAct (EBI-1050370) 
 Built cDNA – cell IP – LC-MS/MS – data generation – PPI network 
 Author used spoke model, so less FP (a flow chart process to filter FP) 
 Interaction confidence score, MS/MS PPI data verify 
 Validation – other orthogonal source of PPI 
 Biological process – bait-prey coincidence 
 Node size = number of prey 

 
 
July 23 5:45 pm 
Why small RNA are highly coserved 
John Mattick 

 Devote to an RNA regulatory system to diversity, differentiation, and development 
 ncRNA increase with organism complexity 
 mRNA + intronic RNA implies functional  
 how is regulation scale with function, r = a nb, b = 2 is ideally 
 it is found that r ~ n (1.96) 
 reference  Sci (2005), 307, 856 
 ncRNA rapid evolution (see TIG (2006), 22, p1) 
 lack of conservation not mean lack of function 
 cis-antisense stand ncRNA  
 function of ncRNA 
 chromatin modification (DNA:DNA:RNA), (2) transcriptional regulation, (3) control of 

alternative splicing, (4) RNA modification and silencing 
 
July 24 9:30 am 
"RNA structure prediction, comparison and motif search "  
J. Reeder 
 

 Shape abstraction, ncRNA genes has no ORF information 
 Recent advanced – 3D motif, chemical probing, Rfam as a gold standard 
 RAVENNA – use shape abstraction from CM to HMM to speed up Rfam search 
 ncRNA gene prediction, RNAz, EVOFOLD 
 structure alignment as trees and points as string 
 LOCOMOTIF – generate from thermodynamics matcher and present as grapher 
 Shape abstraction (SA) – retain nesting and adjancy of stems 
 Retain or disregard types of bulge or internal loops 
 SA mathematics, SA function, shape representation structure, SA probability = Boltzmann 

probability of a shape 
 RNA classification – predict alternative structure form consensus prediction 
 Classification via shape dominance (probability larger than 0.5) 
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 Any SA function that is a tree homomorphism can be integrated into your DP program  
 
July 24 10:00 am 
"non-coding RNA" 
P. Stadler  
 

 Easy for ncRNA genes (not much indel), such as (r, t, tm, mi, SRP)RNA 
 Hard for U7, SnRNA, yRNA, vault RNA 
 Method – use Infernal then Locarna 
 FRAGREP2 
 RNAz – ncRNA gene finding tool, method – MSA + RNASS + MFE 
 Predict Hs genome has about 36000 ncRNA 
 ncRNA annotation problem – RNA family (high homology), RNA class (based on structure), 

RNA gene finding problem 
 RNAstrand – on which strand is ncRNA located 
 GC, GU substitution is different 
 miRNA is rather conserved in mammalian 
 putative novel RNA classes 

 
July 24 9:30 am 
"ncRNA motif detection " 
 

 consider the ncRNA secondary structure, do a gap remove 
 pairwise alignment, has a different meaning of local alignment 
 MSA of ncRNA, no progress clustering allow consensus contain nested loop 
 Tools : MARMA, locaRNA – clustering of RNAz ncRNA prediction 
 MEMERIS – sequences motif with structure features  

 
July 24 1:30 pm 
“RNA folding with pseudoknot” 
 

 Build a mechanical model of folding RNA structure 
 Study the force extension curve of small RNA motif 
 RNA knot -  in co-transcriptional folding and RNA self-assemble 
 Pseudoknoe versus knot, two ways to do it, (entangle helices, chirality) 

 
July 24 2:00 pm 
“influence flow: integrating pathway-specific RNAi data and protein interaction data” 
R. Singh 
 

 RNAi + PPI for MAPK signal transduction pathway prediction 
 Define RNAi score 
 Core cascade – high flow part, non-cascade – lower or less flow part 
 Multi-commodity formulation is quite flexible 
 Dealing with noise indicate FP (define a threshold to cutoff the RNAi signal) 
 Epistasis, synthetic lethal experiments 

 
 
July 25 8:45 am 
“Genomic SELEX for the identification of novel non-coding RNAs independent of their 
expression level” 
Renee Schroeder, Department of Biochemistry, University of Vienna 
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 Two ways to study RNA expression 
 RNomics – isolate RNA – cDNA – size selection – c-tailing 
 Microarray - isolate RNA – cDNA – binding 
 Both use cDNA only see condition at one fixed time point 
 Genomic SELEX – size selction – RNA pool in vitro – selection by looking RNA-protein 

complex 
 Two examples of gene SELEX 
 Isolation of Hfq binding RNA from Ecoli 
 Hfq is essential for RNA-RNA binding 
 Biding studies – primer do not affect RNA motif 
 Do both (with primer – Hfq, without primer – Hfq) 
 Anti-sense RNA regulate sense RNA 
 D(anti-sense RNA) ~ D(sense RNA) 
 D(anti-sense RNA) < D(sense RNA) - Control the transcriptional level 
 Large cis-asRNA – there could be anti-sense pervasive translation 

 
July 25 8:45 am 
Knowledge management for modeling cell cycle control 
 

 DIAMONDS 
 CCO – cell cycle ontology web tool, http://www.CellCycleOntology.org 
 Provide information, such as what (CyclinB), where (cytoplasm), when (interphase) 

 
July 25 10:15 am 
Computational prediction of host-pathoen PPI 
M. D. Dyer 
 

 Predict host-host (H-H), host-pathogen (H-P), pathogen-pathogen (P-P) PPI 
 No gold standard database for validation 
 Define a triplet state, that H-H-P, H-P-P 
 Study triplet coexpression 
 Functional enrichment 

 
July 25 1:45 pm 
Keynote 
Computational biology: what is next? 
Temple F. Smith 
 

 Chomosky hierarch of protein domain  
 Single domain –  regular expression 
 Concatenates domains – context free language 
 Intercalate domains – context dependent language 
 Interlace domains – regular enumerate language 
 Pathway overlap control by compartmentalization 
 Phenomme – filament growth, osmolarity response 
 Species specific domain or block 
 Ribosomal protein – ribosomal peptidyl transferase protein to answer the evolution problem 
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十五、 考察參觀活動(無是項活動者省略) 

Null 
 
十六、 建議 

The conference was taken place at the Vienna international center at Vienna, and had a lot of 
discussions.  The level and quality of the talks are outstanding. The talk gave by O’Shea is 
extremely enlightening. Her work is a ground-breaking work. 
 

十七、 攜回資料名稱及內容 

資料名稱:  
(3) ISMB/ECCB07 programme 
(4) ISMB/ECCB07 CD 
 

十八、 其他 
 

 
 


