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Abstract

This paper studies the problem of incorporating both learning and forgetting in setups and production into the

dynamic lot-sizing model to obtain an optimal production policy, including the optimal number of production runs and

the optimal production quantities during the finite period planning horizon. Since the unit production cost is variable

due to the effects of learning and forgetting, the first-in-first-out (FIFO) inventory costing method is used in our model.

After deriving the relevant cost functions, we develop the multi-dimensional forward dynamic programming (MDFDP)

algorithm based on two important properties that can be proved to be able to reduce the computational complexity. A

numerical example is illustrated and solved using our refined MDFDP algorithm. The results from our computational

experiment show that the optimal number of production runs decreases with the increase of the learning or forgetting

rates, while the optimal total cost increases with the increase of one of the above four rates. Production learning has the

greatest influence on the optimal total cost among the four parameters. The interactive effects of five demand patterns

and nine relationships generated by the four rates on the optimal number of production runs and the optimal total cost

are also examined.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Owing to the increasing emphasis on time-based competition, the importance of learning and forgetting
effects on manufacturing has been widely recognized. Both effects on the continuous review system with a
constant demand rate have been studied by Keachie and Fontana (1966), Spradlin and Pierce (1967), Adler
and Nanda (1974), Carlson (1975), Sule (1978, 1981), Axs.ater and Elmaghraby (1981), Elmaghraby (1990),
and Jaber and Bonney (1997a, 1998, 2001). The above studies only considered learning and forgetting
effects on production. Another study conducted by Li and Cheng (1994) was more general in that the
economic production quantity (EPQ) model involved learning in setups and both learning and forgetting in
production. Jaber and Bonney (1999) surveyed the above models and suggested possible extensions to the
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lot size problem in which both learning and forgetting are incorporated into both setups and production.
They also suggested that their earlier work may be extended to the model of Wagner and Whitin by
including a finite planning horizon with zero inventories at the beginning of the initial cycle and the end of
the last cycle. However, few papers have incorporated both effects into the dynamic lot-sizing problems
with discrete time-varying demand. Chand and Sethi (1990) considered the dynamic lot-sizing problem in a
pure setup learning environment in which only setup costs were susceptible to improvements. They
developed a forward dynamic programming algorithm, which can be used on a rolling horizon basis, for
infinite horizon problems. Tzur (1996) extended Chand and Sethi’s work to a more general model, which
allows the total setup cost to be a general nondecreasing (but not necessarily concave) function of the
number of setups. Recently, Chiu (1997) incorporated learning and forgetting effects on production into the
dynamic lot-sizing model. Furthermore, he also extended the optimal Wagner and Whitin (1958) algorithm
and three existing heuristic models.

Unlike previous works, this paper studies the problem of incorporating both learning and forgetting in
setups and production into the dynamic lot-sizing model to obtain an optimal production policy, including
the number of production runs, lot sizes, and time points for starting setups and production. Since the
period-demand and finite periods of the planning horizon are assumed in this paper, but setups and
production times are scheduled continuously, the proposed model is virtually a mix of discrete and
continuous models. As far as we know, few papers have studied this model.

The setup time and unit production time are assumed to have learning phenomena, and are represented
as power functions of the cumulative number of repetitions. The forgetting effect is mainly caused by a
break between two consecutive production runs and leads to retrogression in learning. Besides the quantity
produced to date and the length of the interruption, other factors such as the availability of the same
personnel, tooling, and methods that have a direct effect on the degree of human forgetting were also
considered in Anderlohr (1969) and Cochran (1973). Globerson et al. (1989) showed that the degree of
forgetting is a function of the break length and the level of experience gained prior to the break in a
laboratory experiment. In fact, a variety of factors influence the forgetting effect like the break length,
previous experience, job complexity, the work engaged in during the interruption period, the cycle time of
the task, the relearning curve, and a single relearning observation (e.g., repair or maintenance) (Dar-El,
2000, pp. 83–92). Jaber and Bonney (1996) proposed a mathematical model in which the forgetting slope is
dependent on three factors (i.e., the equivalent accumulated output of continuous production by the point
of interruption, the minimum break under total forgetting, and the learning slope). They (Jaber and
Bonney, 1997b) also compared their model with two existing models. Their model is more realistic, and
their predicted time was very close to the experimental data provided by Globerson et al. (1989). For
simplicity, we assumed fixed forgetting rates in setups and production, as adopted by Li and Cheng (1994),
to make our proposed multi-dimensional forward dynamic programming (MDFDP) algorithm more
tractable. Since the production cost of each unit is not identical due to learning and forgetting, the FIFO
inventory costing method is used in this paper.

In the next section, the notations used throughout this paper are defined, and basic assumptions are
given. Section 3 then presents a general description of the model and formulates relevant cost functions for
each production run. Subsequently, Section 4 develops the refined MDFDP algorithm by applying two
important properties, and an example is also provided. An experiment conducted to analyze the effects of
relevant parameters on the optimal solution is discussed in Section 5. Finally, Section 6 concludes the paper
with a brief summary of the results.
2. Notations and assumptions

The following notations will be used throughout this study:
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Parameters
N
 length of the planning horizon expressed in periods

di
 demand in a given period i; d1 > 0 and diX0

rs
 fixed learning rate in setups, 0orsp1

bs
 learning coefficient associated with setups, bs ¼ �log rs=log 2

fs
 fixed forgetting rate in setups, 0pfsp1

rp
 fixed learning rate in production, 0orpp1

bp
 learning coefficient associated with production, bp ¼ �log rp=log 2

fp
 fixed forgetting rate in production, 0pfpp1

y
 fixed production capacity per period (in man-periods)

Co
 direct labor cost per man-period

Cm
 direct material cost and overhead per unit

Ch
 fixed carrying cost rate per period
Decision variables
n
 total number of production runs planned for the entire planning horizon

qj
 number of units produced in the jth production run.
Intermediate variables
i
 period count that denotes the time interval between the time points of i � 1 and i; i ¼ 1; 2;y;N

j
 production run count, j ¼ 1; 2;y; and jpN
Dði;mÞ
 cumulative units of demand from a specific period i to period m: That is, Dði;mÞ ¼ di þ diþ1 þ
?þ dm�1 þ dm ¼

Pm
a¼1 da and ipmpN
Ið i Þ
 inventory at the end of period i after the demand di is satisfied, Ið i ÞX0

Qj
 cumulative units produced from the first production run to the jth production run. That is,

Qj ¼ q1 þ q2 þ?þ qj and Q0 ¼ 0

Sj
 time (in man-periods) required to set up the jth production run

tj; x
 time (in man-periods) required to produce the xth cumulative unit of the jth production run,

where 1pxpqj Pq

Pj
 production time in the jth production run, Pj ¼

j

x¼1 tj; x
Aj
 time point at which setup of the jth production run begins (see Fig. 1)

Bj
 time point at which production in the jth production run begins

Mj
 number of periods whose demand is satisfied during the production phase (Phase I) in the jth

production run

Kj
 number of periods whose demand is satisfied during the non-production phase (Phase II) in the

jth production run

SCj
 the setup cost of the jth production run

PCj
 the production cost, including the direct labor cost, direct material cost and overhead, for the jth

production run

WCj
 the inventory carrying cost incurred during the production phase in the jth production

run

HCj
 the inventory carrying cost incurred during the non-production phase in the jth production

run
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Fig. 1. Inventory levels and cumulative production units of the jth production run.
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The objective of this paper is to obtain the optimal solution for the above defined decision variables that
minimizes the total cost during the planning horizon i.e., minimize

Xn

j¼1

ðSCj þ PCj þ WCj þ HCjÞ:
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The following assumptions are made herein:
(1)
 The single-stage manufacturing system considers only one product, and the product is not subject to
deterioration, obsolescence, or perishability during the finite planning horizon.
(2)
 The demand in the form of d1; d2;y; dN is known but varies from one period to another. The demand
for each period is scheduled to be delivered (i.e., to be satisfied) at the end of that period, and each
period has the same length of time.
(3)
 The beginning inventory in period 1 and the ending inventory in period N both equal zero (i.e.,
Ið0Þ ¼ IðN Þ ¼ 0). No shortages or stockouts are permitted during the planning horizon. The production
capacity per period, y; can satisfy the period demand. A mathematical expression for the production
capacity constraint is Sj þ

Pdi

x¼1 tj; xpy man-periods, where the jth production run during the planning
horizon is performed in period i: Without loss of the generality, we assume that y ¼ 1 in this paper.
(4)
 To achieve the objectives of lower inventory and on-time delivery, the start times of setup and
production in a production period are delayed as long as possible without incurring shortages.
Production starts immediately when setup is finished. A setup is not necessarily incurred in every
production period, but only occurs after non-production (idle time).
(5)
 The FIFO rule is used to govern delivery units of the product produced.

(6)
 Both the setup time and unit production time decrease as a result of learning. A fixed fraction of the

total setup learning is lost (i.e., forgotten or retrogressed) due to a manufacturing interruption between
two consecutive setups. Forgetting is similarly applied to production. The two forgetting rates (i.e., fs
and fp) have been defined previously. This forgetting assumption in production was used by Li and
Cheng (1994). The time required to set up the first production run, denoted by S1; and the time
required to produce the first unit of the first production run, t1;1; are both known.
(7)
 Cost parameters Co; Cm and Ch do not change with time. The direct labor cost per period is constant
since we assume that the same skilled workers perform the setup and production jobs. It is also
assumed that the total overhead during the planning horizon can be estimated and allocated to the
total production quantities ðQnÞ: Hence, the value of Cm (i.e., the sum of the unit direct material cost
and unit overhead) is fixed. Similarly, this fixed value of Ch can be easily estimated based on the current
cost of capital.
(8)
 The carrying cost for a unit of the product is proportional to its production cost and is calculated based
on the time length from its completion time to the time when it is delivered.
3. Model description

The learning functions without forgetting in setups and production are

Sj ¼ S1½ð j � 1Þ þ 1��bs ¼ S1j�bs ð1Þ

and

tj; x ¼ t1;1ðQj�1 þ xÞ�bp ; ð2Þ

where 1pxpqj : From Assumption (6), the time required to set up the jth production run is

Sj ¼ S1½ð1 � fsÞð j � 1Þ þ 1��bs ; ð3Þ

where 1 � fs represents the retentive proportion of the total learning obtained in the previous j � 1 setups.
Similarly, the production time required to produce the xth unit in the jth production run is

tj; x ¼ t1;1½ð1 � fpÞQj�1 þ x��bp : ð4Þ



ARTICLE IN PRESS

H.N. Chiu, H.M. Chen / Int. J. Production Economics 95 (2005) 179–193184
Obviously, Sj in Eq. (3) equals S1 when j ¼ 1 (the first production run), and tj; x in Eq. (4) equals t1;1 when
j ¼ 1 and x ¼ 1: In addition, Eq. (4) implies that a fraction of the total learning defined by Li and Cheng
(1994, p. 121, Eq. (2)) is lost between production lots. Alternatively, if we make the remembered learning
assumption under which the loss is related to the cumulative units remembered, then Eq. (4) becomes
tj; x ¼ t1;1½

Pj�1
i¼1 ð1 � fpÞ

j�i qi þ x��bp : As stated by Li and Cheng (1994), such an assumption would lead to a
more complex model to which the dynamic programming approach could not be applied.

From Eq. (3) and Assumption (7), the setup cost of the jth production run is

SCj ¼ CoSj ¼ CoS1½ð1 � fsÞð j � 1Þ þ 1��bs : ð5Þ

The production cost, including the direct labor cost, direct material cost and overhead, for the jth
production run can be derived from Eq. (4) and Assumption (7). The result is given by

PCj ¼CoPj þ Cmqj ¼ Co

Xqj

x¼1

tj; x þ Cmqj

¼Cot1;1
Xqj

x¼1

½ð1 � fpÞQj�1 þ x��bp þ Cmqj : ð6Þ

As shown in Fig. 1, the jth production run is supposed to start production at time Bj in period i (i.e.,
i � 1oBjX1). Because stockouts are not allowed, as described in Assumption (3), 0odi � Iði � 1Þp
qjpDð1;N Þ � Qj�1: Meanwhile, the time at which the jth production run begins to produce can be
determined by

Bj ¼ i �
Xdi�Iði�1Þ

x¼1

tj; x > i � 1; ð7Þ

where i here represents the time length from the beginning of period 1 to the end of period i: The time at
which setup of the jth production run begins is

Aj ¼ Bj � SjXi � 1: ð8Þ

The carrying cost for the units produced in the jth production run can be divided into two parts. One part
of the carrying cost (see the left shaded area in Fig. 1) is calculated in Phase I, while another part of the
carrying cost (see the right shaded area in Fig. 1) is computed in Phase II.

In Phase I, the number of periods in which each period-demand is satisfied by the quantity produced in
the jth production run is

Kj ¼ IBj þ Pjm� ði � 1Þ; ð9Þ

where IBj þ Pjm denotes the largest integer no greater than Bj þ Pj : To simplify our presentation, we define
that Uði;wÞ ¼ Dði;wÞ � Iði � 1Þ and ipwpN; given Iði � 1Þ: The carrying cost based on every unit
production cost in this phase (i.e., the time interval between Bj and Bj þ Pj) can then be derived as shown in
Appendix A. The result is

WCj ¼Ch

Xqj�1

x¼1

ðCotj; x þ CmÞ
Xqj

y¼xþ1

tj; y

 !" #
� Co

XUði;iÞ

x¼1

tj; x þ CmUði; iÞ

" #
ðBj þ Pj � iÞ

(

�
XiþKj�2

w¼i

Co

XUði;wþ1Þ

x¼Uði;wÞþ1

tj; x þ Cmdwþ1

 !
½Bj þ Pj � ðw þ 1Þ�

)
: ð10Þ

Thus, the number of periods in which each period-demand is satisfied in Phase II is given by

Mj ¼ maxfinteger g jD½1; ði � 1Þ þ Kj þ g�pQjg: ð11Þ
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The carrying cost in this phase (from time Bj þ Pj to time i þ Kj þ Mj), calculated in Appendix B, can be
presented as

HCj ¼Ch

XiþKjþMj�1

a¼iþKj

Co

XUði;aÞ

x¼Uði;a�1Þþ1

tj; x þ Cmda

 !
½a� ðBj þ PjÞ�

8<
:

þ Co

Xqj

x¼Uði;iþKjþMj�1Þþ1

tj; x þ CmðQj � Dð1; i þ Kj þ Mj � 1ÞÞ

2
4

3
5½i þ Kj þ Mj � ðBj þ PjÞ�

9=
;:

ð12Þ

Consequently, the total cost of the jth production run, which starts production in period i; is

TCj ¼TCði; j;Qj�1; qjÞ

¼SCj þ PCj þ WCj þ HCj ; ð13Þ

where SCj ; PCj ; WCj ; and HCj are given in Eqs. (5), (6), (10), and (12), respectively.
It should be noted here that the time length of Phase II in the jth production run should be long enough

so that the ð j þ 1Þth production run can be setup and satisfies the net demand (i.e.,
diþKjþMj

2Iði þ Kj þ Mj � 1Þ) at the end of period i þ Kj þ Mj : That is,

Sjþ1 þ
XdiþKjþMj

�IðiþKjþMj�1Þ

x¼1

tjþ1;xpi þ Kj þ Mj � ðBj þ PjÞ; ð14Þ

where Iði þ Kj þ Mj � 1Þ ¼ Qj �
PiþKjþMj�1

a¼1 da:
The mathematical model of this research problem is as follows:

Minimize
Xn

j¼1

ðSCj þ PCj þ WCj þ HCjÞ

subject to

Sj þ
Xdi

x¼1

tj; xp1 for 1pjpipN;

0pIð i ÞpDð1;N Þ � Dð 1; i Þ; for i ¼ 1; 2;y;N;

dipIði � 1Þ þ qj ;

0oqjpDð1;N Þ � Qj�1;

Ið0Þ ¼ 0;

1pnpN:

The first inequality, Sj þ
Pdi

x¼1 tj; xp1; expresses the capacity constraint, as described in Assumption (3).
The second inequality, 0pIð i ÞpDð1;N Þ � Dð1; iÞ; implies that IðN Þ ¼ 0: The third inequality, dip
Iði � 1Þ þ qj ; represents the assumption under which no shortages are permitted. The last inequality,
0oqjpDð1;N Þ � Qj�1; constrains the number of units produced in the jth production run that does not
exceed an upper limit under the assumption that IðN Þ ¼ 0: The upper limit is determined by subtracting
Qj�1 from the total demand during the planning horizon.
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4. The optimal multi-dimensional forward dynamic programming algorithm

Since the total cost of the jth production run, as shown in Eq. (13), depends on i; j; Qj�1; and qj ;
and the mathematical model mentioned in Section 3 cannot be solved directly, the proposed MDFDP
algorithm refined by applying Properties 1 and 2 can be used to solve the optimal values of q1; q2;y; qn

and n:

Property 1. The optimal solution does not include a production run started in a period in which the beginning

inventory is large or equal to the demand of that period.

Proof. Suppose the jth production run is performed and produces q units in period i; where Iði � 1ÞXdi

and qpqj : According to Assumption (3), postponement of the jth production run to the period i þ 1 is
beneficial since the savings obtained in the carrying cost is

Ch Cot1;1
Xq

x¼1

½ð1 � fpÞQj�1 þ x��bp þ Cmq

( )
> 0: &

First, let Lð j Þ be the period in which the jth production run is set up and begins to perform production.
The total cost function is defined as follows:

F ½Lð j Þ; j;Qj� = the minimum total cost from the first production run to the jth production run, given
that the jth production run is set up and begins production in period Lð j Þ; where jpLð j ÞpN; that the
cumulative production quantities is Qj ; and that Qj is sufficient to satisfy the demand from period 1 to
period Lð j Þ:

Second, the recurrence relation is

F ½Lð j Þ; j;Qj�

¼ minfTC½Lð j Þ; j;Qj � qj ; qj� þ F ½Lð j � 1Þ; j � 1;Qj � qj�jLð j � 1ÞoLð j ÞpN;

0pIðLð j ÞÞpDð1;N Þ � Dð1;Lð j ÞÞ; dLð j ÞpQj � Dð1;Lð j Þ � 1Þ; and qjpDð1;N Þ � Qj�1g: ð15Þ

Third, the boundary conditions are F ð0; 0; 0Þ ¼ 0; F ði; 0; 0Þ-N for iX1; F ð0; j; 0Þ-N for jX1; and
F ð0; 0;QjÞ-N for QjX1: Finally, the optimal solution is

F�
n ¼ F ½Lðn�Þ; n�;Dð1;N Þ� ¼ minfFng; where n ¼ 1; 2;y;N

and

Fn ¼ F ½LðnÞ; n;Dð1;N Þ� ¼ minfTC½LðnÞ; n;Dð1;N Þ � qn; qn� þ F ½Lðn � 1Þ; n � 1;Dð1;N Þ � qn�g:

As a result, the optimal values of q�j for j ¼ 1; 2;y; n can be obtained by using the backtracking process.
Here, the computational complexity of Eq. (15) is OðNðDð1;N ÞÞ2Þ: Further, improvement of the
computational efficiency can be achieved by means of the following property:

Property 2. If the production learning rate is fixed and the unit inventory carrying cost per period for the

product is proportional to the unit production cost, which is variable due to learning, then the zero inventory

property holds.

Proof. Since the unit production time decreases with the increase in the number of units produced as a
result of the fixed production learning rate, both the unit production cost and the unit inventory carrying
cost per period are nonincreasing (concave) functions. From Taha (1997, p. 462), it is easy to show that
Iði � 1Þqj ¼ 0 for all i (where Iði � 1Þ is the beginning inventory in period i; and j is the count of the next
production run occurring in period i). &
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From Property 2, Eq. (15) can be simplified to obtain

F ði; j;QjÞ ¼ min TC½i; j;Dð1; i � 1Þ; qj � þ F ½Lð j � 1Þ; j � 1;Dð1; i � 1Þ�jLð j � 1ÞpipN;

(

Iði � 1Þ ¼ 0; di > 0; and qj ¼
Xl
a¼i

da;where l ¼ i; i þ 1;y;N

)
: ð16Þ

The computational complexity of the proposed MDFDP algorithm can be reduced from OðNðDð1;N ÞÞ2Þ to
OðN3Þ since NpDð1;N Þ:

Example. A producer of industrial vehicles carried out pilot production to satisfy orders for a new type of
straddle carrier. The finished carriers were periodically delivered by train, and the production manager was
confronted with the following ordering situation for the first 6 periods:
Period i
Table 1

Results for the nu

n j Aj

1 1 0.4950

2 1 0.4950

2 4.6810

3 1 0.4950�

2 2.4098

3 5.3412

4 1 0.4950

2 2.4098

3 3.6327

4 5.3542

5 1 0.4950

2 1.4484

3 2.4272

4 3.6457

5 5.3643

6 1 0.4950

2 1.4484

3 2.4272

4 3.6457

5 4.7215

6 5.3726

Note: �For examp

is 0.2500; consequ
1

merical example

Sj Bj

0.2500 0.7450

0.2500 0.7450

0.2243 4.9053

0.2500 0.7450

0.2243 2.6341

0.2069 5.5481

0.2500 0.7450

0.2243 2.6341

0.2069 3.8396

0.1939 5.5481

0.2500 0.7450

0.2243 1.6727

0.2069 2.6341

0.1939 3.8396

0.1838 5.5481

0.2500 0.7450

0.2243 1.6727

0.2069 2.6341

0.1939 3.8396

0.1838 4.9053

0.1755 5.5481

le, n ¼ 3; the time p

ently, setup ends at
2

Qj Pj S

49 1.5795 2

31 1.0660 2

18 0.5437 2

15 0.5692 2

19 0.6121 2

15 0.4519 2

15 0.5692 2

11 0.3659 2

8 0.2538 2

15 0.4519 1

6 0.2550 2

9 0.3273 2

11 0.3659 2

8 0.2538 1

15 0.4519 1

6 0.2550 2

9 0.3273 2

11 0.3659 2

5 0.1604 1

3 0.0947 1

15 0.4519 1

oint for starting setu

time 0.7450 (=0.4
3

Cj PCj

50.00 26079.50

50.00 16566.00

24.34 9543.72

50.00 8069.19

24.34 10112.10

06.90 7951.91

50.00 8069.19

24.34 5865.90

06.90 4253.79

93.96 7951.91

50.00 3255.04

24.34 4827.29

06.90 5865.90

93.96 4253.79

83.80 7951.91

50.00 3255.04

24.34 4827.29

06.90 5865.90

93.96 2660.40

83.80 1594.72

75.53 7951.91

p for the first prod

950+0.2500).
4

WCj HCj

643.63 2088.4

265.94 683.1

84.69 218.9

49.16 165.0

70.49 239.5

82.70 0.0

49.16 165.0

47.82 0.0

10.94 72.2

82.70 0.0

16.31 0.0

34.08 0.0

47.82 0.0

10.94 72.2

82.70 0.0

16.31 0.0

34.08 0.0

47.82 0.0

8.47 0.0

2.51 0.0

82.70 0.0

uction run (i.e., j ¼
5

TCj Fn

4 29061.60 29

4 17765.10

9 10071.70 27

9 8533.44

9 10646.50

0 8241.51 27

9 8533.44

0 6138.06

3 4543.86

0 8228.57 27

0 3521.34

0 5085.71

0 6120.62

3 4530.91

0 8218.42 27

0 3521.34

0 5085.71

0 6120.62

0 2862.82

0 1781.03

0 8210.14 27

1) is 0.4950. The du
6

Demand di
 6
 9
 11
 5
 3
 15
Given S1 ¼ 0:25; t1;1 ¼ 0:05; Co ¼ 1; 000; Cm ¼ 500; and Ch ¼ 0:05; suppose that rs ¼ 0:80; fs ¼ 0:60; rp ¼
0:90; and fp ¼ 0:40: Using the refined MDFDP algorithm, the best production policies for n ¼ 1; 2;y; and
6 were those summarized in Table 1. As n increases, the inventory carrying cost reduces but setups
and production costs increase. Therefore, the production policy with an adequate value of n is
advantageous. In this example, zero inventories are encountered 8.25% (i.e., 0:4950=6 � 100%Þ and 20.77%
F�
n

061.60

836.80

421.40 27421.40

443.90

477.00

581.70

ration of the setup
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(i.e., ð0:4950 þ 0:4098 þ 0:3412Þ=6 � 100%Þ of the time for n=1 and 3, respectively. When n increases from
1 to 3, setups and production costs increase by 484.84 and the inventory carrying cost reduces by 2,125.04.
Hence, the total cost reduces by 1,640.20. However, as n increases from 3 to 4, setups and production costs
increase by 201.55 but the inventory carrying cost only reduces by 179.05. The total cost increases by 22.50.
Similarly, the total costs are increasing as n increases from 4 to 6. As a result, the optimal production policy
was based on three runs (i.e., n ¼ 3) during the 6-period planning horizon (i.e., N ¼ 6). The three runs were
set up at times 0.4950 (see the note in Table 1), 2.4098, and 5.3412. Each production run was started
immediately when the corresponding setup was finished; i.e., the three runs were started at 0.7450 (also see
note in Table 1), 2.6341, and 5.5481. In fact, the three runs produced 15 units, 19 units, and 15 units in
period 1, 3, and 6, respectively. The minimum total cost was 27,421.40.
5. Computational experience

We conducted an experiment to explore the effects of learning, forgetting, and the demand pattern on the
total cost and the number of production runs. The proposed MDFDP algorithm was programmed in
Visual C++ 6.0 and run on a PC with a Pentium III 600. A series of problems generated from Dð1;N Þ ¼
60 were tested. For each test problem, the fixed parameters, including N; S1; t1;1; Co; Cm; and Ch; were
assigned the same values presented in the previous section. The various values for each of the other
parameters were rs ¼ 0:6; 0.8, and 1.0; fs ¼ 0:0; 0.5, and 1.0; rp ¼ 0:6; 0.8, and 1.0; and fp ¼ 0:0; 0.5, and
1.0. In addition, the five types of demand patterns were chosen as follows:

Type I. Demand concentrated in the early and late periods: 15, 10, 5, 5, 10, 15.
Type II. Demand concentrated in the middle periods: 5, 10, 15, 15, 10, 5.
Type III. Equal demand in all periods: 10, 10, 10, 10, 10, 10.
Type IV. Gradually descending demand: 15, 15, 10, 10, 5, 5.
Type V. Gradually ascending demand: 5, 5, 10, 10, 15, 15.
A total of 405 (i.e., 3 � 3 � 3 � 3 � 5) test problems were generated. Tables 2, 3 and 4 present the results

obtained by using the proposed MDFDP algorithm. They are explained in the following:
(1)
Table

Aver

Param

rs ¼

rs ¼

rs ¼

Colu

Over
Table 2 shows that the average optimal number of production runs decrease slightly with the increase
of the values of rs; fs; rp; or fp:
2

age optimal number of production runs obtained by using the proposed algorithm

eters rp ¼ 0:6 rp ¼ 0:8 rp ¼ 1:0 Row

average

Overall

average

fp ¼ 0:0 fp ¼ 0:5 fp ¼ 1:0 fp ¼ 0:0 fp ¼ 0:5 fp ¼ 1:0 fp ¼ 0:0 fp ¼ 0:05 fp ¼ 1:0

0:6 fs ¼ 0:0 5.00 5.00 4.00 5.00 5.00 3.77 4.15 4.15 4.15 4.47

fs ¼ 0:5 5.00 5.00 3.38 5.00 4.85 3.15 3.54 3.54 3.54 4.11 3.94

fs ¼ 1:0 3.54 3.54 3.00 3.54 3.54 3.00 3.00 3.00 3.00 3.24

0:8 fs ¼ 0:0 4.93 4.93 3.93 4.93 4.93 3.67 4.00 4.00 4.00 4.37

fs ¼ 0:5 4.93 4.93 3.40 4.93 4.80 3.13 3.47 3.47 3.47 4.06 3.90

fs ¼ 1:0 3.60 3.60 3.00 3.60 3.60 3.00 3.00 3.00 3.00 3.27

1:0 fs ¼ 0:0 4.93 4.93 3.93 4.93 4.93 3.67 4.00 4.00 4.00 4.37

fs ¼ 0:5 4.93 4.93 3.40 4.93 4.80 3.13 3.47 3.47 3.47 4.06 3.90

fs ¼ 1:0 3.60 3.60 3.00 3.60 3.60 3.00 3.00 3.00 3.00 3.27

mn average 4.50 4.50 3.45 4.50 4.45 3.28 3.51 3.51 3.51

all average 4.15 4.08 3.51
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Table 3

Average optimal total cost obtained by using the proposed algorithm

Parameter rs ¼ 0:6 rp ¼ 0:8 rp ¼ 1:0 Row

average

Overall

average

fp ¼ 0:0 fp ¼ 0:5 fp ¼ 1:0 fp ¼ 0:0 fp ¼ 0:5 fp ¼ 1:0 fp ¼ 0:0 fp ¼ 0:5 fp ¼ 1:0

rs ¼ 0:6 fs ¼ 0:0 31477.39 31571.51 32091.80 32310.31 32462.36 32939.05 34355.82 34355.82 34355.82 32879.99

fs ¼ 0:5 31577.97 31672.09 32164.17 32410.87 32562.36 32998.28 34436.78 34436.78 34436.78 32966.23 32987.81

fs ¼ 1:0 31823.78 31897.08 32268.05 32626.41 32750.39 33087.75 34533.80 34533.80 34533.80 33117.21

rs ¼ 0:8 fs ¼ 0:0 31500.68 31592.17 32106.30 32333.73 32482.82 32949.99 34371.25 34371.25 34371.25 32897.72

fs ¼ 0:5 31594.29 31685.79 32173.69 32427.33 32575.93 33004.25 34444.34 34444.34 34444.34 32977.14 32997.09

fs ¼ 1:0 31821.20 31893.18 32269.78 32626.10 32748.86 33087.16 34533.80 34533.80 34533.80 33116.41

rs ¼ 1:0 fs ¼ 0:0 31500.68 31592.17 32106.30 32333.73 32482.82 32949.99 34371.25 34371.25 34371.25 32897.72

fs ¼ 0:5 31594.29 31685.79 32173.69 32427.33 32575.93 33004.25 34444.34 34444.34 34444.34 32977.14 32997.09

fs ¼ 1:0 31821.20 31893.18 32269.78 32626.10 32748.86 33087.16 34533.80 34533.80 34533.80 33116.41

Column average 31634.61 31720.33 32180.40 32457.99 32598.93 33011.99 34447.24 34447.24 34447.24

Overall average 31845.11 32689.63 34447.24

Table 4

A summary of the average optimal number of production runs and average optimal total cost

Relationship of

parameters

Average optimal number of production runs Average optimal total cost

Demand pattern Row

average

Demand pattern Row

average

I II III IV V I II III IV V

rsorp fso fp 4.44 4.33 4.67 4.33 4.33 4.42 33766.22 33768.52 33751.28 33763.71 33770.08 33763.96

fs ¼ fp 4.11 4.11 4.33 4.11 4.00 4.13 33774.43 33775.39 33758.59 33773.88 33773.76 33771.21

fs > fp 3.67 3.67 3.67 3.44 3.67 3.62 33836.53 33834.70 33834.51 33837.32 33834.44 33835.50

rs ¼ rp fso fp 3.89 4.00 4.00 3.89 3.89 3.93 33031.52 33036.44 33058.59 33027.90 33036.67 33038.22

fs ¼ fp 4.11 4.00 4.33 4.11 4.11 4.13 32949.64 32952.58 32959.48 32941.31 32948.70 32950.34

fs > fp 4.00 4.00 3.67 3.56 4.00 3.85 32938.48 32935.37 32970.76 32941.11 32935.12 32944.17

rs > rp fso fp 3.67 3.56 3.33 3.22 3.56 3.47 32358.97 32368.51 32396.21 32328.56 32363.58 32363.17

fs ¼ fp 3.89 3.89 3.67 3.44 3.89 3.76 32206.89 32208.32 32251.80 32190.78 32205.21 32212.60

fs > fp 4.11 4.11 3.33 3.22 4.11 3.78 32081.36 32074.81 32154.47 32085.52 32077.00 32094.63

Column average 3.99 3.96 3.89 3.70 3.95 32993.78 32994.96 33015.08 32987.79 32993.84
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(2)
 Table 3 indicates that the average optimal total cost increased with the increase of the values of rs; fs;
rp; or fp: It is apparent that the increase of the value of each parameter led directly to a higher setup or
unit production cost. In addition, production learning had the greatest influence on total cost among
the four parameters.
(3)
 The observation in Table 2 implies that the effects of rp on the number of production runs are more
influential than that of rs: For instance, as rp and rs decrease from 1.0 to 0.6, variations in the optimal
number of production runs are 18.23% (i.e., ð4:15 � 3:51Þ=3:51 � 100%Þ and 1.03% (i.e., ð3:94 �
3:90Þ=3:90 � 100%Þ; respectively.
(4)
 In Table 3, it can be seen that the effect of rp on the total cost is more significant than that of rs on the total
cost. For example, as rp and rs go from 1.0 to 0.6, variations of total cost are 7.55% (i.e.,
(34,447.24�31,845.11)/34,447.24%Þ and 0.03% (i.e., (32,997.09�32,987.81)/32,997.09�100%Þ; respectively.
(5)
 Tables 2 and 3 also further reveal the important result that the smaller the values of rs and rp are, the
more influential fs and fp are. This result is consistent with the findings of Jaber and Bonney (1996) and
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Jaber and Kher (2002) in which the forgetting effects are dependent on the learning effects. In Table 2,
as rs decreases from 1.0 to 0.6, the effect of fs on the optimal number of production runs (shown in
Row average of Table 2) increases from 33.64% (i.e., ð4:37 � 3:27Þ=3:27 � 100%Þ to 37.96% (i.e.,
ð4:47 � 3:24Þ=3:24 � 100%Þ: Similarly, as rp decreases from 1.0 to 0.6, the effect of fp on the optimal
number of production runs (shown in Column average of Table 2) increases from 0.00% (i.e., ð3:51 �
3:51Þ=3:51 � 100%Þ to 30.88% (i.e., ð4:50 � 3:45Þ=3:45 � 100%Þ: Results in Table 3 also show that
effects of fs and fp on total cost increase as rs and rp decrease from 1.0 to 0.6, respectively.
(6)
 The optimal number of production runs and the optimal total cost were insensitive to the demand
pattern, as shown in Table 4. Nine relationships among rs; fs; rp; and fp are shown in Table 4. It can be
observed from the first three relationships that when rsorp; the optimal number of production runs
decreased as the forgetting rate in setups ðfsÞ relative to the forgetting rate in production ðfpÞ increased.
The main reason is that the smaller rs and the larger fs incurred a higher cost in setups. The next three
relationships led to the same results. However, the last three relationships exhibited the opposite
phenomenon since the effects on production surpassed those on setups.
6. Conclusions

This study has presented an effective approach to handling the complex dynamic lot-sizing model, in
which learning and forgetting in setups and production are considered simultaneously. In fact, the
proposed MDFDP model is a mix of discrete and continuous ones. This inevitably causes intractability in
obtaining the optimal solution, including the optimal number of production runs and the optimal
production quantities during the planning horizon. Fortunately, we have developed two important
properties that have been proven able to reduce the computational complexity.

The results shown in our computational experience have indicated that the average optimal number of
production runs decreases as one rate increases, and that the other three rates remain fixed. The average
optimal total cost increases as one of the above four rates increases. Furthermore, production learning has
the greatest influence on the optimal total cost, as compared with the other three parameters. The effects of
production learning on the number of production runs and total cost are more influential than that of setup
learning. The results are also consistent with the important findings of previous works in which the
forgetting effects are dependent on the learning effects. This paper also provides insight useful to
practitioners and researchers in understanding the interactive effects of the five demand patterns and nine
relationships generated by learning and forgetting rates on the average optimal number of production runs
and the average optimal total cost.
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Appendix A

The derivation of the inventory carrying cost incurred in Phase I.
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As shown in Fig. 1, the demand of Kj periods (from period i to period i þ Kj � 1) is satisfied in Phase I.
The inventory level at the beginning of period i is Iði � 1Þ: Given that Uði;wÞ ¼ ð

Pw
a¼i daÞ � Iði � 1Þ; the

units produced and delivered in this phase are di � Iði � 1Þ; diþ1;y; and diþKj�1; respectively. Hence, the
production cost for each delivery can be given, respectively, as follows:

Cdi
¼ Co

Xdi�Iði�1Þ

x¼1

tj; x þ Cm½di � Iði � 1Þ� ¼ Co

XUði;iÞ

x¼1

tj; x þ CmUði; iÞ;

Cdiþ1
¼ Co

Xdiþ1þdi�Iði�1Þ

x¼di�Iði�1Þþ1

tj; x þ Cmdiþ1 ¼ Co

XUði;iþ1Þ

Uði;iÞþ1

tj; x þ Cmdiþ1;y;

and

CdiþKj�1
¼ Co

XdiþKj�1þ?þdi�Iði�1Þ

x¼diþKj�2þ?þdi�Iði�1Þþ1

tj; x þ CmdiþKj�1 ¼ Co

XUði;iþKj�1Þ

x¼Uði;iþKj�2Þþ1

tj; x þ CmdiþKj�1:

The inventory carrying cost incurred in this phase is

WCj ¼Ch ðCotj;1 þ CmÞðtj;2 þ tj;3 þ?þ tj;qj�1 þ tj;qj
Þ

(

þðCotj;2 þ CmÞðtj;3 þ tj;4 þ?þ tj;qj�1 þ tj;qj
Þ þ?þ ðCotj;qj�2 þ CmÞðtj;qj�1 þ tj;qj

Þ þ ðCotj;qj�1 þ CmÞðtj;qj
Þ

� Co

XUði;iÞ

x¼1

tj; x þ CmUði; iÞ

" #
ðBj þ Pj � iÞ �

XiþKj�2

w¼i

Co

XUði;wþ1Þ

x¼Uði;wÞþ1

tj; x þ Cmdwþ1

" #
½Bj þ Pj � ðw þ 1Þ�

)

¼Ch

Xqj�1

x¼1

ðCotj; x þ CmÞ
Xqj

y¼xþ1

tj; y

 !" #
� Co

XUði;iÞ

x¼1

tj; x þ CmUði; iÞ

" #
ðBj þ Pj � iÞ

(

�
XiþKj�2

w¼i

Co

XUði;wþ1Þ

x¼Uði;wÞþ1

tj; x þ Cmdwþ1

 !
½Bj þ Pj � ðw þ 1Þ�

)
: ðA:1Þ
Appendix B

The derivation of the inventory carrying cost incurred in Phase II.
Given that the production of the jth production run completed in period i þ Kj (i.e.,

i þ Kj � 1pBj þ Pjoi þ Kj) and the demands of Mj periods (from period i þ Kj to period
i þ Kj þ Mj � 1) are satisfied in Phase II, as shown in Fig. 1. The diþKj

; diþKjþ1;y; and diþKjþMj�1 units
produced in the jth production run are delivered at the end of period i þ Kj ; i þ Kj þ 1;y; and i þ Kj þ
Mj � 1; respectively. Since Uði;wÞ ¼

Pw
a¼i da

� �
� Iði � 1Þ; the production cost for each delivery can be

calculated by

CdiþKj
¼ Co

XdiþKj
þ?þdi�Iði�1Þ

x¼diþKj�1þ?þdi�Iði�1Þþ1

tj; x þ CmdiþKj
¼ Co

XUði;iþKj Þ

x¼Uði;iþKj�1Þþ1

tj; x þ CmdiþKj
;
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CdiþKjþ1 ¼ Co

XdiþKjþ1þ?þdi�Iði�1Þ

x¼diþKj
þ?þdi�Iði�1Þþ1

tj; x þ CmdiþKjþ1 ¼ Co

XUði;iþKjþ1Þ

x¼Uði;iþKj Þþ1

tj; x þ CmdiþKjþ1;y;

and

CdiþKjþMj�1

¼ Co

XdiþKjþMj�1þ?þdi�Iði�1Þ

x¼diþKjþMj�2þ?þdi�Iði�1Þþ1

tj; x þ CmdiþKjþMj�1

¼ Co

XUði;iþKjþMj�1Þ

x¼Uði;iþKjþMj�2Þþ1

tj; x þ CmdiþKjþMj�1:

The production cost for the residual units, which are produced in the jth production run but left for the
first delivery in the next production run, is

CdiþKjþMj
¼Co

Xqj

x¼diþKjþMj�1þ?þdi�Iði�1Þþ1

tj; x þ Cm½Qj � Dð1; i þ Kj þ Mj � 1Þ�

¼Co

Xqj

x¼Uði;iþKjþMj�1Þþ1

tj; x þ Cm½Qj � Dð1; i þ Kj þ Mj � 1Þ�:

As a result, the inventory carrying cost incurred during Phase II can be expressed as

HCj ¼Ch

XiþKjþMj�1

a¼iþKj

Co

XUði;aÞ

x¼Uði;a�1Þþ1

tj; x þ Cmda

 !
½a� ðBj þ PjÞ�

8<
:

þ Co

Xqj

x¼Uði;iþKjþMj�1Þþ1

tj; x þ CmðQj � Dð1; i þ Kj þ Mj � 1ÞÞ

2
4

3
5½i þ Kj þ Mj � ðBj þ PjÞ�

9=
;:

ðB:1Þ
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