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Abstract

This paper studies the problem of incorporating both learning and forgetting in setups and production into the
dynamic lot-sizing model to obtain an optimal production policy, including the optimal number of production runs and
the optimal production quantities during the finite period planning horizon. Since the unit production cost is variable
due to the effects of learning and forgetting, the first-in-first-out (FIFO) inventory costing method is used in our model.
After deriving the relevant cost functions, we develop the multi-dimensional forward dynamic programming (MDFDP)
algorithm based on two important properties that can be proved to be able to reduce the computational complexity. A
numerical example is illustrated and solved using our refined MDFDP algorithm. The results from our computational
experiment show that the optimal number of production runs decreases with the increase of the learning or forgetting
rates, while the optimal total cost increases with the increase of one of the above four rates. Production learning has the
greatest influence on the optimal total cost among the four parameters. The interactive effects of five demand patterns
and nine relationships generated by the four rates on the optimal number of production runs and the optimal total cost
are also examined.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Owing to the increasing emphasis on time-based competition, the importance of learning and forgetting
effects on manufacturing has been widely recognized. Both effects on the continuous review system with a
constant demand rate have been studied by Keachie and Fontana (1966), Spradlin and Pierce (1967), Adler
and Nanda (1974), Carlson (1975), Sule (1978, 1981), Axsdter and Elmaghraby (1981), Elmaghraby (1990),
and Jaber and Bonney (1997a, 1998, 2001). The above studies only considered learning and forgetting
effects on production. Another study conducted by Li and Cheng (1994) was more general in that the
economic production quantity (EPQ) model involved learning in setups and both learning and forgetting in
production. Jaber and Bonney (1999) surveyed the above models and suggested possible extensions to the
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lot size problem in which both learning and forgetting are incorporated into both setups and production.
They also suggested that their earlier work may be extended to the model of Wagner and Whitin by
including a finite planning horizon with zero inventories at the beginning of the initial cycle and the end of
the last cycle. However, few papers have incorporated both effects into the dynamic lot-sizing problems
with discrete time-varying demand. Chand and Sethi (1990) considered the dynamic lot-sizing problem in a
pure setup learning environment in which only setup costs were susceptible to improvements. They
developed a forward dynamic programming algorithm, which can be used on a rolling horizon basis, for
infinite horizon problems. Tzur (1996) extended Chand and Sethi’s work to a more general model, which
allows the total setup cost to be a general nondecreasing (but not necessarily concave) function of the
number of setups. Recently, Chiu (1997) incorporated learning and forgetting effects on production into the
dynamic lot-sizing model. Furthermore, he also extended the optimal Wagner and Whitin (1958) algorithm
and three existing heuristic models.

Unlike previous works, this paper studies the problem of incorporating both learning and forgetting in
setups and production into the dynamic lot-sizing model to obtain an optimal production policy, including
the number of production runs, lot sizes, and time points for starting setups and production. Since the
period-demand and finite periods of the planning horizon are assumed in this paper, but setups and
production times are scheduled continuously, the proposed model is virtually a mix of discrete and
continuous models. As far as we know, few papers have studied this model.

The setup time and unit production time are assumed to have learning phenomena, and are represented
as power functions of the cumulative number of repetitions. The forgetting effect is mainly caused by a
break between two consecutive production runs and leads to retrogression in learning. Besides the quantity
produced to date and the length of the interruption, other factors such as the availability of the same
personnel, tooling, and methods that have a direct effect on the degree of human forgetting were also
considered in Anderlohr (1969) and Cochran (1973). Globerson et al. (1989) showed that the degree of
forgetting is a function of the break length and the level of experience gained prior to the break in a
laboratory experiment. In fact, a variety of factors influence the forgetting effect like the break length,
previous experience, job complexity, the work engaged in during the interruption period, the cycle time of
the task, the relearning curve, and a single relearning observation (e.g., repair or maintenance) (Dar-El,
2000, pp. 83-92). Jaber and Bonney (1996) proposed a mathematical model in which the forgetting slope is
dependent on three factors (i.e., the equivalent accumulated output of continuous production by the point
of interruption, the minimum break under total forgetting, and the learning slope). They (Jaber and
Bonney, 1997b) also compared their model with two existing models. Their model is more realistic, and
their predicted time was very close to the experimental data provided by Globerson et al. (1989). For
simplicity, we assumed fixed forgetting rates in setups and production, as adopted by Li and Cheng (1994),
to make our proposed multi-dimensional forward dynamic programming (MDFDP) algorithm more
tractable. Since the production cost of each unit is not identical due to learning and forgetting, the FIFO
inventory costing method is used in this paper.

In the next section, the notations used throughout this paper are defined, and basic assumptions are
given. Section 3 then presents a general description of the model and formulates relevant cost functions for
each production run. Subsequently, Section 4 develops the refined MDFDP algorithm by applying two
important properties, and an example is also provided. An experiment conducted to analyze the effects of
relevant parameters on the optimal solution is discussed in Section 5. Finally, Section 6 concludes the paper
with a brief summary of the results.

2. Notations and assumptions

The following notations will be used throughout this study:
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Parameters

N length of the planning horizon expressed in periods

d; demand in a given period i, d; > 0 and d;>0

Ts fixed learning rate in setups, 0<r,<1

by learning coefficient associated with setups, by = —logrs/log2
fs fixed forgetting rate in setups, 0<f; <1

Tp fixed learning rate in production, 0 <r, <1

by learning coefficient associated with production, b, = —logr,/log2
fo fixed forgetting rate in production, 0</, <1

0 fixed production capacity per period (in man-periods)

C, direct labor cost per man-period

Ch direct material cost and overhead per unit

Cy fixed carrying cost rate per period

Decision variables

n total number of production runs planned for the entire planning horizon
q number of units produced in the jth production run.

Intermediate variables

i period count that denotes the time interval between the time points of i — 1 and i,i = 1,2, ..., N

j production run count, j = 1,2, ..., and j<N

D(i,m) cumulative units of demand from a specific period i to period m. That is, D(i,m) = d; + d;y| +
ot dyy +dy =" doand i<m<N

I(7) inventory at the end of period i after the demand d; is satisfied, 1(i)=>0

0, cumulative units produced from the first production run to the jth production run. That is,
Oi=qi+q:+ - +¢gand Qo =0

S; time (in man-periods) required to set up the jth production run

i x time (in man-periods) required to produce the xth cumulative unit of the jth production run,
where 1<x<g;

P; production time in the jth production run, P; = Y7 ¢ .

A; time point at which setup of the jth production run begins (see Fig. 1)

B; time point at which production in the jth production run begins

M; number of periods whose demand is satisfied during the production phase (Phase I) in the jth
production run

K; number of periods whose demand is satisfied during the non-production phase (Phase II) in the
jth production run

SC; the setup cost of the jth production run

PC; the production cost, including the direct labor cost, direct material cost and overhead, for the jth
production run

wc; the inventory carrying cost incurred during the production phase in the jth production
run

HCG; the inventory carrying cost incurred during the non-production phase in the jth production

run
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Inventory level

4 The jth production run

4
Ty 2
i "/

/ >
i-1 I i+Kj-1 i +K; i +Kj +M;
S phase | phase |l
A; B The length of production phase B; +Pj The length of

non-production phase

Cumulative units

A
94JjFF-—"""—"—"—"—"—"—"—"—"—"—"—"—"—"—-"———
I
di+KJ-
F——-
|
|
|
ity Lo AANNLA _____
|
|
. DELIVERED |
ui.o AL A e
di—1(-1 !
0 //:' -9 1
i-1 i i+1 i+KJ-—1 i+KJ-

Fig. 1. Inventory levels and cumulative production units of the jth production run.

The objective of this paper is to obtain the optimal solution for the above defined decision variables that
minimizes the total cost during the planning horizon i.e., minimize

> (SC;+ PCj + WC; + HC)).
=1
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The following assumptions are made herein:

(1) The single-stage manufacturing system considers only one product, and the product is not subject to
deterioration, obsolescence, or perishability during the finite planning horizon.

(2) The demand in the form of d, d>, ..., dy is known but varies from one period to another. The demand
for each period is scheduled to be delivered (i.e., to be satisfied) at the end of that period, and each
period has the same length of time.

(3) The beginning inventory in period 1 and the ending inventory in period N both equal zero (i.e.,
1(0) = I(N ) = 0). No shortages or stockouts are permitted during the planning horizon. The production
capacity per period, 0, can satisfy the period demand. A mathematical expression for the production
capacity constraint is S; + Z‘Yl’: | 4, » <0 man-periods, where the jth production run during the planning
horizon is performed in period i. Without loss of the generality, we assume that 6 = 1 in this paper.

(4) To achieve the objectives of lower inventory and on-time delivery, the start times of setup and
production in a production period are delayed as long as possible without incurring shortages.
Production starts immediately when setup is finished. A setup is not necessarily incurred in every
production period, but only occurs after non-production (idle time).

(5) The FIFO rule is used to govern delivery units of the product produced.

(6) Both the setup time and unit production time decrease as a result of learning. A fixed fraction of the
total setup learning is lost (i.e., forgotten or retrogressed) due to a manufacturing interruption between
two consecutive setups. Forgetting is similarly applied to production. The two forgetting rates (i.e., fs
and f,) have been defined previously. This forgetting assumption in production was used by Li and
Cheng (1994). The time required to set up the first production run, denoted by S;, and the time
required to produce the first unit of the first production run, #;, are both known.

(7) Cost parameters C,, Cy, and C,, do not change with time. The direct labor cost per period is constant
since we assume that the same skilled workers perform the setup and production jobs. It is also
assumed that the total overhead during the planning horizon can be estimated and allocated to the
total production quantities (Q,). Hence, the value of Cy, (i.e., the sum of the unit direct material cost
and unit overhead) is fixed. Similarly, this fixed value of C}, can be easily estimated based on the current
cost of capital.

(8) The carrying cost for a unit of the product is proportional to its production cost and is calculated based
on the time length from its completion time to the time when it is delivered.

3. Model description

The learning functions without forgetting in setups and production are

Sj=Si( - D+ =Sy " (M
and

o = 10(Qm1 + 1), 6y
where 1<x<g;. From Assumption (6), the time required to set up the jth production run is

Sp =Sl =)0 =D+ 117", A3)

where 1 — f; represents the retentive proportion of the total learning obtained in the previous j — 1 setups.
Similarly, the production time required to produce the xth unit in the jth production run is

. = tal(l = ) Q1+ X] 7. @
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Obviously, S; in Eq. (3) equals S} when j = 1 (the first production run), and #; , in Eq. (4) equals #;; when
j=1and x = 1. In addition, Eq. (4) implies that a fraction of the total learning defined by Li and Cheng
(1994, p. 121, Eq. (2)) is lost between production lots. Alternatively, if we make the remembered learning
assumption under which the loss is related to the cumulative units remembered, then Eq. (4) becomes
tx= 11,1[21.;} (1 —fp)-/_i gi + x]Pr. As stated by Li and Cheng (1994), such an assumption would lead to a
more complex model to which the dynamic programming approach could not be applied.

From Eq. (3) and Assumption (7), the setup cost of the jth production run is

SCp = CoSj = CoSil(1 =G = D+ 117 “

The production cost, including the direct labor cost, direct material cost and overhead, for the jth
production run can be derived from Eq. (4) and Assumption (7). The result is given by

4
PGy =CoP;+ Cngj = Co ) _ 1.+ Cng;

x=1
qj
= Cotiy D (1= f) Q1 + X1 + Cing;. (©)
x=1

As shown in Fig. 1, the jth production run is supposed to start production at time B; in period i (i.e.,
i—1<B;>1). Because stockouts are not allowed, as described in Assumption (3), 0<d; —I(i — 1)<
¢;<D(1,N)— Q;_;. Meanwhile, the time at which the jth production run begins to produce can be
determined by

di—I(i—1)
Bi=i— Y fix>i-l, ™)
x=1
where i here represents the time length from the beginning of period 1 to the end of period i. The time at
which setup of the jth production run begins is

dj=Bj - §zi— 1 ®)

The carrying cost for the units produced in the jth production run can be divided into two parts. One part
of the carrying cost (see the left shaded area in Fig. 1) is calculated in Phase I, while another part of the
carrying cost (see the right shaded area in Fig. 1) is computed in Phase II.

In Phase I, the number of periods in which each period-demand is satisfied by the quantity produced in
the jth production run is

Ki=|Bi+P|-(i-1), )

where | B; + P; | denotes the largest integer no greater than B; + P;. To simplify our presentation, we define
that U(i,w) = D(i,w) — I(i—1) and i<w<N, given I(i — 1). The carrying cost based on every unit
production cost in this phase (i.e., the time interval between B; and B; + P;) can then be derived as shown in
Appendix A. The result is

gi—1 q; U(i,i)
WG = ch{z (Cotj x + cm)( o y> Co D> tix+ CuUGi)| (B + P; — i)
x=1 y=x+1 x=1
i+K;—2 U(i,w+1)
_> (co S gt Cmdn,H) [Bj + P; — (w+ 1)]}. (10)
w=i x=U(i,w)+1

Thus, the number of periods in which each period-demand is satisfied in Phase II is given by
M; = max{integer g |D[1,(i — 1)+ K; + g]< Q;}. (11)
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The carrying cost in this phase (from time B; 4+ P; to time i + K; + M), calculated in Appendix B, can be
presented as

i+ K+ Mj—1 Uli,0)
HG=G{ Y (Co > r.f,x+Cmd«>[a<—(Bf+Pf>1

o=i+K; x=U(i,0—1)+1
i
+ | GCo > tix+ Cu(Q; — D(1, i+ K; + M; — 1)) |[i + K; + M; — (B; + P))]
x=U(i,i+ K+Mj—1)+1
(12)
Consequently, the total cost of the jth production run, which starts production in period i, is
TC; =TC(,J, Qj-1,9))

=S8C+ PC;+ WC; + HC;, (13)

where SC;, PC;, WC;, and HC; are given in Eqs. (5), (6), (10), and (12), respectively.

It should be noted here that the time length of Phase II in the jth production run should be long enough
so that the (j+ Dth production run can be setup and satisfies the net demand (i.e.,
div kv, —1(i + Kj + M; — 1)) at the end of period i + K; + M;. That is,

tii+[(j+11,[jfl(i+Kj+]V[jfl)
Sje1 + > G <i+ K+ M;— (B + P), (14)

x=1

where I(i + K; + M; — 1) = Q; — Zi+1<,-+M,-71 d,

=1
The mathematical model of this research problem is as follows:

n
Minimize (SC;+ PC; + WC; + HG))
j j j j

=1

=
subject to

d
Si+ ) tix<1 for 1<j<i<N,

x=1

0<I(i)<D(,N)—-D(1l,i), fori=1,2,...,N,
di<I(i—1)+gq,

0<g;<D(,N)— Qj_1,

1(0) =0,

I<n<N.

i

The first inequality, S; + Zf’: 1 4, x <1, expresses the capacity constraint, as described in Assumption (3).
The second inequality, 0<I(i)<D(1,N)— D(1,i), implies that I(N)=0. The third inequality, d;<
I(i — 1) + g;, represents the assumption under which no shortages are permitted. The last inequality,
0<g;<D(1,N)— Q;_y, constrains the number of units produced in the jth production run that does not
exceed an upper limit under the assumption that I(N ) = 0. The upper limit is determined by subtracting
Qj_1 from the total demand during the planning horizon.
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4. The optimal multi-dimensional forward dynamic programming algorithm

Since the total cost of the jth production run, as shown in Eq. (13), depends on i, j, Q;—i, and gj,
and the mathematical model mentioned in Section 3 cannot be solved directly, the proposed MDFDP
algorithm refined by applying Properties 1 and 2 can be used to solve the optimal values of ¢1,¢>, ..., ¢x
and n.

Property 1. The optimal solution does not include a production run started in a period in which the beginning
inventory is large or equal to the demand of that period.

Proof. Suppose the jth production run is performed and produces ¢ units in period i, where I(i — 1)>d;
and g<g;. According to Assumption (3), postponement of the jth production run to the period i+ 1 is
beneficial since the savings obtained in the carrying cost is

x=1

q
Ch{Coll,l Z (1= /)01 + 7" + CmQ} >0. O
First, let L(j) be the period in which the jth production run is set up and begins to perform production.
The total cost function is defined as follows:
F[L(j).j,Q;] = the minimum total cost from the first production run to the jth production run, given
that the jth production run is set up and begins production in period L(j), where j<L(j)<N, that the
cumulative production quantities is Q;, and that Q; is sufficient to satisfy the demand from period 1 to

period L(j).
Second, the recurrence relation is
FIL(j).J, Q)]
=min{TC[L(} ).}, Qj — 4> ¢}l + FIL(j — 1),j = 1, Q; — ¢;]IL(j — ) <L(j)<N,
0<I(L(jN<D(,N)—D(1,L(j)),drjy<@Q; — D(1,L(j) — 1),and ¢;<D(I,N) — Qj1}.  (15)

Third, the boundary conditions are F(0,0,0) =0, F(i,0,0)— oo for i=1, F(0,7,0)— oo for j>=1, and
F(0,0,Q;)— oo for Q;=1. Finally, the optimal solution is

F' = F[L(n*),n*,D(1,N )] = min{F,}, where n=1,2,...,N
and

F, = F[L(n),n, D(1, N )] = min{TC[L(n),n, D(1, N ) — gn,q,] + F[L(n — 1),n — 1, D(1, N ) — g,]}.

As a result, the optimal values of qj’-" forj=1,2,...,n can be obtained by using the backtracking process.
Here, the computational complexity of Eq.(15) is O(N(D(1,N))*). Further, improvement of the
computational efficiency can be achieved by means of the following property:

Property 2. If the production learning rate is fixed and the unit inventory carrying cost per period for the
product is proportional to the unit production cost, which is variable due to learning, then the zero inventory
property holds.

Proof. Since the unit production time decreases with the increase in the number of units produced as a
result of the fixed production learning rate, both the unit production cost and the unit inventory carrying
cost per period are nonincreasing (concave) functions. From Taha (1997, p. 462), it is easy to show that
I1(i — 1)g; = 0 for all i (where I(i — 1) is the beginning inventory in period i, and j is the count of the next
production run occurring in period 7). O
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From Property 2, Eq. (15) can be simplified to obtain

)
IGi—1)=0,d;>0, and ¢; = Y _ dy,where A=1i,i+1,..,N . (16)
The computational complexity of the proposed MDFDP algorithm can be reduced from O(N(D(1, N ))?) to
O(N?) since N<D(1,N).

Example. A producer of industrial vehicles carried out pilot production to satisfy orders for a new type of
straddle carrier. The finished carriers were periodically delivered by train, and the production manager was
confronted with the following ordering situation for the first 6 periods:

Period i 1 2 3 4 5 6
Demand d; 6 9 11 5 3 15

Given 1 = 0.25, t1; = 0.05, C, = 1,000, Cy, = 500, and Gy, = 0.05, suppose that r; = 0.80, f; = 0.60, r, =
0.90, and f;, = 0.40. Using the refined MDFDP algorithm, the best production policies for n = 1,2, ..., and
6 were those summarized in Table 1. As n increases, the inventory carrying cost reduces but setups
and production costs increase. Therefore, the production policy with an adequate value of n is
advantageous. In this example, zero inventories are encountered 8.25% (i.e., 0.4950/6 x 100%) and 20.77%

Table 1
Results for the numerical example
nojo4 s B o K SG PG we,  HG TG F, F}
1 1 0.4950 0.2500  0.7450 49  1.5795 250.00 26079.50 643.63 2088.44 29061.60  29061.60
2 1 04950 0.2500  0.7450 31  1.0660  250.00 16566.00 265.94 683.14  17765.10

2 4.6810 0.2243 49053 18 0.5437 224.34 9543.72 84.69 218.99  10071.70  27836.80
3 1 0.4950* 02500 0.7450 15  0.5692  250.00 8069.19 49.16 165.09 8533.44

2 2.4098 0.2243  2.6341 19 0.6121 22434 10112.10 70.49 239.59  10646.50

3 53412 0.2069 5.5481 15 0.4519 206.90 7951.91 82.70 0.00 8241.51  27421.40  27421.40
4 1 0495 0.2500  0.7450 15 0.5692  250.00 8069.19 49.16 165.09 8533.44

2 24098 0.2243  2.6341 11  0.3659 224.34 5865.90 47.82 0.00 6138.06

3 3.6327 0.2069  3.8396 8 0.2538  206.90 4253.79 10.94 72.23 4543.86

4 5.3542 0.1939  5.5481 15 0.4519 193.96 7951.91 82.70 0.00 8228.57  27443.90
5 1 0.4950 0.2500  0.7450 6 0.2550  250.00 3255.04 16.31 0.00 3521.34

2 1.4484 0.2243  1.6727 9 0.3273 22434 4827.29 34.08 0.00 5085.71

3 24272 0.2069 2.6341 11  0.3659  206.90 5865.90 47.82 0.00 6120.62

4 3.6457 0.1939  3.8396 8 0.2538 193.96 4253.79 10.94 72.23 4530.91

5 53643 0.1838  5.5481 15 0.4519 183.80 7951.91 82.70 0.00 8218.42  27477.00
6 1 0.495 0.2500  0.7450 6 0.2550  250.00 3255.04 16.31 0.00 3521.34

2 1.4484 0.2243  1.6727 9 0.3273  224.34 4827.29 34.08 0.00 5085.71

3 24272 0.2069  2.6341 11  0.3659 206.90 5865.90 47.82 0.00 6120.62

4 3.6457 0.1939  3.8396 5 0.1604 193.96 2660.40 8.47 0.00 2862.82

5 47215 0.1838  4.9053 3 0.0947 183.80 1594.72 2.51 0.00 1781.03

6 53726 0.1755 5.5481 15 0.4519 175.53 7951.91 82.70 0.00 8210.14  27581.70

Note: *For example, n = 3, the time point for starting setup for the first production run (i.e., j = 1) is 0.4950. The duration of the setup
is 0.2500; consequently, setup ends at time 0.7450 (=0.4950+ 0.2500).
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(i.e., (0.4950 + 0.4098 + 0.3412)/6 x 100%) of the time for n=1 and 3, respectively. When # increases from
1 to 3, setups and production costs increase by 484.84 and the inventory carrying cost reduces by 2,125.04.
Hence, the total cost reduces by 1,640.20. However, as n increases from 3 to 4, setups and production costs
increase by 201.55 but the inventory carrying cost only reduces by 179.05. The total cost increases by 22.50.
Similarly, the total costs are increasing as n increases from 4 to 6. As a result, the optimal production policy
was based on three runs (i.e., n = 3) during the 6-period planning horizon (i.e., N = 6). The three runs were
set up at times 0.4950 (see the note in Table 1), 2.4098, and 5.3412. Each production run was started
immediately when the corresponding setup was finished; i.e., the three runs were started at 0.7450 (also see
note in Table 1), 2.6341, and 5.5481. In fact, the three runs produced 15 units, 19 units, and 15 units in
period 1, 3, and 6, respectively. The minimum total cost was 27,421.40.

5. Computational experience

We conducted an experiment to explore the effects of learning, forgetting, and the demand pattern on the
total cost and the number of production runs. The proposed MDFDP algorithm was programmed in
Visual C+ + 6.0 and run on a PC with a Pentium III 600. A series of problems generated from D(I, N ) =
60 were tested. For each test problem, the fixed parameters, including N, Si, t11, Co, Cn, and G, were
assigned the same values presented in the previous section. The various values for each of the other
parameters were rs = 0.6, 0.8, and 1.0; f; = 0.0, 0.5, and 1.0; r, = 0.6, 0.8, and 1.0; and f, = 0.0, 0.5, and
1.0. In addition, the five types of demand patterns were chosen as follows:

Type 1. Demand concentrated in the early and late periods: 15, 10, 5, 5, 10, 15.

Type II. Demand concentrated in the middle periods: 5, 10, 15, 15, 10, 5.

Type III. Equal demand in all periods: 10, 10, 10, 10, 10, 10.

Type IV. Gradually descending demand: 15, 15, 10, 10, 5, 5.

Type V. Gradually ascending demand: 5, 5, 10, 10, 15, 15.

A total of 405 (i.e., 3 x 3 x 3 x 3 x 5) test problems were generated. Tables 2, 3 and 4 present the results
obtained by using the proposed MDFDP algorithm. They are explained in the following:

(1) Table 2 shows that the average optimal number of production runs decrease slightly with the increase
of the values of ry, f;, rp, or f.

Table 2
Average optimal number of production runs obtained by using the proposed algorithm

Parameters rp, =0.6 rp, =08 rp=1.0 Row Overall
average average

fo=00 f,=05 fo=10 f,=00 f,=05 fo=10 f,=00 f, =005 f,=10

rs=06 f,=00 5.00 5.00 4.00 5.00 5.00 3.77 4.15 4.15 4.15 4.47
fs=05 500 5.00 3.38 5.00 4.85 3.15 3.54 3.54 3.54 4.11 3.94
fs=10 354 3.54 3.00 3.54 3.54 3.00 3.00 3.00 3.00 3.24

rs=08 f,=00 493 4.93 393 493 4.93 3.67 4.00 4.00 4.00 4.37
fs=05 493 4.93 3.40 493 4.80 3.13 3.47 3.47 3.47 4.06 3.90
fs=10 3.60 3.60 3.00 3.60 3.60 3.00 3.00 3.00 3.00 3.27

=10 f,=00 493 493 3.93 4.93 4.93 3.67 4.00 4.00 4.00 4.37
fs=05 493 4.93 3.40 493 4.80 3.13 3.47 3.47 3.47 4.06 3.90
fs=10 3.60 3.60 3.00 3.60 3.60 3.00 3.00 3.00 3.00 3.27

Column average 4.50 4.50 3.45 4.50 4.45 3.28 3.51 3.51 3.51

Overall average 4.15 4.08 3.51
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Table 3
Average optimal total cost obtained by using the proposed algorithm

Parameter rs =0.6 rp, =08 rp=1.0 Row Overall

average average
£=00 f,=05 f,=10 f,=00 f,=05 f,=10 f,=00 f,=05 f,=10

rs=0.6 f,=0.0 31477.39 31571.51 32091.80 32310.31 32462.36 32939.05 34355.82 34355.82 34355.82 32879.99

fs=0.5 31577.97 31672.09 32164.17 32410.87 32562.36 32998.28 34436.78 34436.78 34436.78 32966.23 32987.81
fs=1.0 31823.78 31897.08 32268.05 32626.41 32750.39 33087.75 34533.80 34533.80 34533.80 33117.21

rs =08 f,=0.0 31500.68 31592.17 32106.30 32333.73 32482.82 32949.99 34371.25 34371.25 34371.25 32897.72

f:=0.5 31594.29 31685.79 32173.69 32427.33 32575.93 33004.25 34444.34 34444.34 34444.34 32977.14 32997.09
fs=1.0 31821.20 31893.18 32269.78 32626.10 32748.86 33087.16 34533.80 34533.80 34533.80 33116.41

rs=10 f,=0.0 31500.68 31592.17 32106.30 32333.73 32482.82 32949.99 34371.25 34371.25 34371.25 32897.72

fs=0.5 31594.29 31685.79 32173.69 32427.33 3257593 33004.25 34444.34 34444.34 34444.34 32977.14 32997.09
fs =10 31821.20 31893.18 32269.78 32626.10 32748.86 33087.16 34533.80 34533.80 34533.80 33116.41

Column average 31634.61 31720.33 32180.40 32457.99 32598.93 33011.99 34447.24 34447.24 34447.24

Overall average 31845.11 32689.63 34447.24
Table 4
A summary of the average optimal number of production runs and average optimal total cost
Relationship of Average optimal number of production runs Average optimal total cost
parameters
Demand pattern Row Demand pattern Row
average average
I 11 111 1A% \Y I 11 111 v A%
rs<ry fi<fo 444 433 4067 433 433 442 33766.22 33768.52 33751.28 33763.71 33770.08 33763.96
fi=f 4l 411 433 411 4.00 4.13 33774.43 33775.39 33758.59 33773.88 33773.76 33771.21
fi>f 367 367 367 344 367 3.62 33836.53 33834.70 33834.51 33837.32 33834.44 33835.50
rs=r, fi<f, 3.8 400 400 389 389 393 33031.52 33036.44 33058.59 33027.90 33036.67 33038.22
fi=f 411 400 433 411 411 413 32949.64 32952.58 32959.48 32941.31 32948.70 32950.34
fs>f, 400 400 367 356 400 3.85 32938.48 32935.37 32970.76 32941.11 32935.12 32944.17
rs>rp  fi<fy 367 356 333 322 356 347 32358.97 32368.51 32396.21 32328.56 32363.58 32363.17
fi=f 389 389 367 344 38 376 32206.89 32208.32 32251.80 32190.78 32205.21 32212.60
> 411 411 333 322 411 3.78 32081.36 32074.81 32154.47 32085.52 32077.00 32094.63
Column average 399 396 389 370 395 32993.78 32994.96 33015.08 32987.79 32993.84
(2) Table 3 indicates that the average optimal total cost increased with the increase of the values of rs, f;,

(©)

4)

®)

rp, or f,. It is apparent that the increase of the value of each parameter led directly to a higher setup or
unit production cost. In addition, production learning had the greatest influence on total cost among
the four parameters.

The observation in Table 2 implies that the effects of r, on the number of production runs are more
influential than that of r,. For instance, as r, and ry decrease from 1.0 to 0.6, variations in the optimal
number of production runs are 18.23% (i.e., (4.15—3.51)/3.51 x 100%) and 1.03% (i.e., (3.94 —
3.90)/3.90 x 100%), respectively.

In Table 3, it can be seen that the effect of 7, on the total cost is more significant than that of r on the total
cost. For example, as r, and r; go from 1.0 to 0.6, variations of total cost are 7.55% (ie.,
(34,447.24—31,845.11)/34,447.24%) and 0.03% (i.e., (32,997.09—32,987.81)/32,997.09 x 100%), respectively.
Tables 2 and 3 also further reveal the important result that the smaller the values of r; and r, are, the
more influential f; and f;, are. This result is consistent with the findings of Jaber and Bonney (1996) and
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Jaber and Kher (2002) in which the forgetting effects are dependent on the learning effects. In Table 2,
as ry decreases from 1.0 to 0.6, the effect of f; on the optimal number of production runs (shown in
Row average of Table 2) increases from 33.64% (i.e., (4.37 — 3.27)/3.27 x 100%) to 37.96% (i.e.,
(4.47 — 3.24)/3.24 x 100%). Similarly, as r, decreases from 1.0 to 0.6, the effect of f, on the optimal
number of production runs (shown in Column average of Table 2) increases from 0.00% (i.e., (3.51 —
3.51)/3.51 x 100%) to 30.88% (i.e., (4.50 — 3.45)/3.45 x 100%). Results in Table 3 also show that
effects of f; and f, on total cost increase as r; and r,, decrease from 1.0 to 0.6, respectively.

(6) The optimal number of production runs and the optimal total cost were insensitive to the demand
pattern, as shown in Table 4. Nine relationships among rs, f;, rp,, and f;, are shown in Table 4. It can be
observed from the first three relationships that when r; <rp,, the optimal number of production runs
decreased as the forgetting rate in setups (f;) relative to the forgetting rate in production (f;,) increased.
The main reason is that the smaller ry and the larger f; incurred a higher cost in setups. The next three
relationships led to the same results. However, the last three relationships exhibited the opposite
phenomenon since the effects on production surpassed those on setups.

6. Conclusions

This study has presented an effective approach to handling the complex dynamic lot-sizing model, in
which learning and forgetting in setups and production are considered simultanecously. In fact, the
proposed MDFDP model is a mix of discrete and continuous ones. This inevitably causes intractability in
obtaining the optimal solution, including the optimal number of production runs and the optimal
production quantities during the planning horizon. Fortunately, we have developed two important
properties that have been proven able to reduce the computational complexity.

The results shown in our computational experience have indicated that the average optimal number of
production runs decreases as one rate increases, and that the other three rates remain fixed. The average
optimal total cost increases as one of the above four rates increases. Furthermore, production learning has
the greatest influence on the optimal total cost, as compared with the other three parameters. The effects of
production learning on the number of production runs and total cost are more influential than that of setup
learning. The results are also consistent with the important findings of previous works in which the
forgetting effects are dependent on the learning effects. This paper also provides insight useful to
practitioners and researchers in understanding the interactive effects of the five demand patterns and nine
relationships generated by learning and forgetting rates on the average optimal number of production runs
and the average optimal total cost.
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Appendix A

The derivation of the inventory carrying cost incurred in Phase 1.
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As shown in Fig. 1, the demand of K; periods (from period i to period i 4+ K; — 1) is satisfied in Phase I.
The inventory level at the beginning of period i is I(i — 1). Given that U(i,w) = 3_)_; d,) — I(i — 1), the
units produced and delivered in this phase are d; — I(i — 1), diy1, ..., and dj; k-1, respectively. Hence, the
production cost for each delivery can be given, respectively, as follows:

di—I(i—1) U(i.i)

Ci=Co D tixtGCaldi—1G=1]=Co ) i+ CulUG.),
x=1 x=1
dip1+di—1(i—1) U(ii+1)
CdHl = Co Z tj,x + Cmdi-H = Co Z t_/',x + Cde-la cees
x=di—1(i—1)+1 Ui,i)+1
and
di i1+ di=1(i=1) U(i,i+K;—1)
Cagr = Co Z lj.x + Cudirg,1 = Co Z l,x + Cnditg,1-
) x=dpy gt +di—1(—1)+1 x=U(i,i+K;—2)+1

The inventory carrying cost incurred in this phase is

wWC; = Ch{(Cotj,1 + C)(tip+tiz+ -+ tig1 + tiy)

+(Cotj,2 + Cm)(tj,f‘ + [j,4 + o+ tj,qul + tj,q/) + o+ (Cotj,quz + Cm)(tj,qul + t/,q;) + (Cotj,qul + Cm)(tj',qj)

U(i,i) i+K—2 Ui,w+1)
1 Co Dt A CuUG) | B+ Pi—i)— > [Co > tix+ Cndyyr |[Bj+ P — (w+ 1)]}
x=1 w=i x=U(i,w)+1
qj-1 qj U(i,i)
= Ch{z (Colj, x T Cm) QZ tj,y) Co Z lj, x T Cm U(l, l) (Bj + Pj - l)
x=1 =x+1 x=1
i+Kj—2 Uliw+1)

-y (co > Gt Cmdw+l>[3j+Pj—(w+ 1)]}. (A.1)

w=i x=U(i,w)+1

Appendix B

The derivation of the inventory carrying cost incurred in Phase II.

Given that the production of the jth production run completed in period i+ K; (i.e.,
i+K —1<Bj+ Pj<i+K;) and the demands of M; periods (from period i+ K; to period
i+ K; + M; — 1) are satisfied in Phase II, as shown in Fig. 1. The d;, k;, di1k;+1, ..., and diy g ;-1 units
produced in the jth production run are delivered at the end of period i+ K, i+ K; + 1, ..., and i + K; +
M; — 1, respectively. Since U(i,w) = (Z::l d“) — I(i — 1), the production cost for each delivery can be
calculated by

diyk;+---+di—1(i—1) U(i,i+K;)

Ca+k, = Co ) loxt Codik,=Co > lix+ Cudiik,
X=dj g1+ d— 1= 1)+ x=U(i,i+Kj—T)+1
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dip 41+ +di—1(i=1) U(i,i+Kj+1)
Carx01 = Co E l,x + Cndiig1 = Co E . x + Codiikii1s -0
x:di+1(j+"'+(l','fl(l'71)+1 X:U(i,i+1<_/)+l
and
Cdﬁ’K/%’M/*l
di kM1 +di—1(—1)
=G, E b, x + Codi k-1

X:dHK/Jer,z-O-'“+di—[(i—1)+1
U(i,i+Kj+M;—1)
=G, E I x + CmdiJrK/JrM‘,-fl-
x=U(i,i+Kj+M;—2)+1

The production cost for the residual units, which are produced in the jth production run but left for the
first delivery in the next production run, is

9
Carrirn; = Co > fix+ CunlQj — D(1,i + K; + M; — 1]
X=diy a1+ di— 1=+
9
=GCo > f«+ CunlQ; — D(1,i + K; + M; — 1)].

x=U(i,i+K+M;—1)+1

As a result, the inventory carrying cost incurred during Phase II can be expressed as

i+Kj+Mj—1 U(i0)
HC =G, Z C, Z i x+ Cndy |[0 — (Bj + P))]
o=i+K; x=U(i,o—1)+1
4
+ e, 3 tx+ Cn(Q — D(Li + K; + M; — D) | [i + K; + M; — (B; + P))]

x=UG,i+ K+ Mj—1)+1

(B.1)
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