This paper deals with the problem of incorporating both learning and forgetting effects into discrete timevarying demand lot-sizing models to determine lot sizes. Forgetting is retrogression in learning which causes a loss of labour productivity due to breaks between intermittent production runs. Formulae are derived for calculating the production cost required to produce the first unit of each successive lot over a finite planning horizon. An optimal lotsizing model and three heuristic models are developed by extending the existing models without learning and forgetting considerations. Numerical examples and computational experience indicate that larger lot sizes are needed when the phenomenon of learning and forgetting exists. Several important conclusions are drawn from a comparison of the three heuristic solutions with the optimal solution, and suggestions for future research and for lot-size users to choose an appropriate lot-sizing technique are made.
Relation:
Production Planning and Control, Taylor & Francis Ltd. 8(5) : 484-493