ASIA unversity:Item 310904400/8792
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21713731      線上人數 : 453
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/8792


    題名: A new classification algorithm combining choquet integral and logistic regression
    作者: Liu, Hsiang-Chan;Jheng, Yu-Du;Chen, Guey-Shya;Jeng, Bai-Cheng
    貢獻者: Department of Bioinformatics
    關鍵詞: Control theory;Cybernetics;Integral equations;Learning systems;Logistics;Robot learning;Support vector machines;Choquet integral;Classification algorithms;Collinearity;Independent variables;Leave one outs;Logistic regression;Logistic regression algorithms;New algorithms;Real datums;Regression models;SVM;SVM algorithms
    日期: 2008
    上傳時間: 2010-04-08 12:06:09 (UTC+0)
    出版者: Asia University
    摘要: Logistic regression algorithm and SVM algorithm are two well-known classification algorithms but when the multi-collinearity between independent variables occurs in above two algorithms, their classifying performance will always be not good. Due to this reason, we firstly proposed a pared-down MLE method in this study to improve the logistic regression algorithm for no needing to group the original data. Secondly, we proposed a novel classification algorithm combining the Choquet integral with respect to the λ-measure based on y-support proposed by our previous work and the improved logistic regression algorithm to further improve the above situation. For evaluating the performances of the SVM, logistic regression and our new algorithm with y-support based on X-measure and P-support respectively, a real data experiment by using Leave-one-out Cross-Validation accuracy is conducted. Experimental result shows that the proposed classification algorithm combining Choquet integral regression model with y-support based on λ-measure has the best performance. ©2008 IEEE.
    關聯: Proceedings of the 7th International Conference on Machine Learning and Cybernetics, ICMLC 6 :3072-3077
    顯示於類別:[生物資訊與醫學工程學系 ] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    0KbUnknown580檢視/開啟
    213.doc31KbMicrosoft Word320檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋