The lipoxygenase isoform of 5-lipoxygenase (5-LOX) is reported to be overexpressed in human rheumatoid arthritis synovial tissue and involved in the progress of inflammatory arthritis. However, the detailed mechanism of how 5-lipoxygenase regulates the inflammatory response in arthritis synovial tissue is still unclear. The aim of this study was to investigate the involvement of lipoxygenase pathways in TNF-α-induced production of cytokines and chemokines. Human synovial fibroblasts from rheumatoid patients were used in this study. 5-LOX inhibitors and shRNA were used to examine the involvement of 5-LOX in TNF-α-induced cytokines and chemokines expression. The signaling pathways were examined by Western Blotting or immunofluorescence staining. The effect of 5-LOX inhibitor on TNF-α-induced chemokine expression and paw edema was also explored in vivo in C57BL/6 mice. Treatment with 5-LOX inhibitors significantly decreased TNF-α-induced pro-inflammatory mediators including interleukin-6 (IL-6) and monocyte chemo-attractant protein-1 (MCP-1) in human synovial fibroblasts. Knockdown of 5-LOX using shRNA exerted similar inhibitory effects. The abrogation of NF-κB activation was involved in the antagonizing effects of these inhibitors. Furthermore, 5-LOX inhibitor decreased TNF-α-induced up-regulation of serum MCP-1 level and paw edema in mouse model. Our results provide the evidence that the administration of 5-LOX inhibitors is able to ameliorate TNF-α-induced cytokine/chemokine release and paw edema, indicating that 5-LOX inhibitors may be developed for therapeutic treatment of inflammatory arthritis.