English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21653257      Online Users : 530
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    ASIA unversity > 資訊學院 > 光電與通訊學系 > 期刊論文 >  Item 310904400/86969


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/86969


    Title: Investigation of a slope-point-based method for the ?design of aspheric surfaces in a catadioptric ?collimating optical system for a ?light-emitting diode source
    Authors: Chen), 陳榮燊(Rung-Sheng
    Contributors: 光電與通訊學系
    Date: 2014
    Issue Date: 2014-11-13 06:54:09 (UTC+0)
    Abstract: The aim of this paper is to develop a straightforward rigorous and flexible computational method to determine the coordinate points on an aspheric surface. The computational method chosen is based on the basic slope-point form of a straight-line equation [slope-point method (SPM)]. The practical instrumental example chosen to illustrate this method is a rotationally symmetric catadioptric collimator for a light-emitting diode (LED) source. This optical system has both a refractive and a totally internally reflective aspheric surface. It is a particularly illuminating example because it requires careful computational attention to the smooth transition between the refracting inner zones and the reflective outer zones of the aperture. The chosen SPM computational method deals satisfactorily with the transition points at the junction between the refractive and total internal reflecting (TIR) zones of the collimator. As part of this study, the effect of the position of the start point of the SPM surface evolution for the TIR zones of the collimator emerges as being particularly important, and the details of this are discussed. Finally, an extension of the basic SPM-based method is used to generalize the development of the catadioptric collimator surfaces to illustrate this general algorithm for aspheric surface design for an extended LED light source.
    Relation: APPLIED OPTICS;53(29):H129-39.
    Appears in Collections:[光電與通訊學系] 期刊論文

    Files in This Item:

    There are no files associated with this item.



    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback