ASIA unversity:Item 310904400/86911
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21713766      Online Users : 454
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/86911


    Title: Exercise training enhanced SIRT1 longevity signaling replaces the IGF1 survival pathway to attenuate aging-induced rat heart apoptosis
    Authors: Chao-Hung Lai;Tsung-Jung Ho;Wei-Wen Kuo;Cecilia-Hsuan Day;Pei-ying Pai;Li-Chin Chung;Po-Hsiang Liao;Feng-Huei Lin;En-Ting Wu;Chih-Yang Huang
    Contributors: 生物科技學系
    Keywords: Aging;Exercise training;Apoptosis;SIRT1;IGF1 survival signaling
    Date: 2014
    Issue Date: 2014-11-07 06:48:58 (UTC+0)
    Abstract: Cardiovascular disease is the second leading cause of death (9.1 %) in Taiwan. Heart function deteriorates with age at a rate of 1 % per year. As society ages, we must study the serious problem of cardiovascular disease. SIRT1 regulates important cellular processes, including anti-apoptosis, neuronal protection, cellular senescence, aging, and longevity. In our previous studies, rats with obesity, high blood pressure, and diabetes exhibiting slowed myocardial performance and induced cell apoptosis were reversed via sports training through IGF1 survival signaling compensation. This study designed a set of experiments with rats, in aging and exercise groups, to identify changes in myocardial cell signaling transduction pathways. Three groups of three different aged rats, 3, 12, and 18 months old, were randomly divided into aging groups (C3, A12, and A18) and exercise groups (E3, AE12, and AE18). The exercise training consisted of swimming five times a week with gradual increases from the first week from 20 to 60 min for 12 weeks. After the sports training process was completed, tissue sections were taken to observe cell organization (hematoxylin and eosin (H&E) stain) and apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays) and to observe any changes in the myocardial tissues and proteins (Western blotting). The experimental results show that cardiomyocyte apoptotic pathway protein expression increased with age in the aging groups (C3, A12, and A18), with improvement in the exercise group (E3, AE12, and AE18). However, the expression of the pro-survival p-Akt protein decreased significantly with age and reduced performance. The IGF1R/PI3K/Akt survival pathway in the heart of young rats can indeed be increased through exercise training. As rats age, this pathway loses its original function, even with increasing upstream IGF1. However, levels of SIRT1 and its downstream target PGC-1α were found to increase with age and compensatory performance. Moreover, exercise training enhanced the SIRT longevity pathway compensation instead of IGF1 survival signaling to improve cardiomyocyte survival.
    Relation: AGE,36(5):9706.
    Appears in Collections:[Department of Biotechnology] Journal Article

    Files in This Item:

    There are no files associated with this item.



    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback