ASIA unversity:Item 310904400/8653
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21661806      線上人數 : 454
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/8653


    題名: Predicting subcellular locations of eukaryotic proteins using bayesian and k-nearest neighbor classifiers
    作者: Hsiao, Han C. W.;Chen, Shih-Hao;Chang, Judson Pei-Chun;Tsai, Jeffrey J. P.
    貢獻者: Department of Bioinformatics
    關鍵詞: Amines;Amino acids;Bayesian networks;Classifiers;Forecasting;Location;Organic acids;Proteins;Amino acid compositions;Bayesian;Bayesian classifiers;Dipeptide compositions;Eukaryotic proteins;Feature reduction;Functional domain;Functional domains;Hybrid approaches;k-nearest neighbor classifier;K-nearest neighbor classifiers;Protein subcellular locations;Reliable methods;Subcellular location prediction;Subcellular locations
    日期: 2008
    上傳時間: 2010-04-07 13:21:20 (UTC+0)
    出版者: Asia University
    摘要: Biologically, the function of a protein is highly related to its subcellular location. It is of necessity to develop a reliable method for protein subcellular location prediction, especially when a large amount of proteins are to be analyzed. Various methods have been proposed to perform the task. The results, however, are not satisfactory in terms of effectiveness and efficiency. A hybrid approach combining nai¨ve Bayesian classifier and k-nearest neighbor classifier is proposed to classify eukaryotic proteins represented as a combination of amino acid composition, dipeptide composition, and functional domain composition. Experimental results show that the total accuracy of a set of 17,655 proteins can reach up to 91.5%.
    關聯: Journal of Information Science and Engineering 24:1361-1375
    顯示於類別:[生物資訊與醫學工程學系 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    157.doc30KbMicrosoft Word297檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋