ASIA unversity:Item 310904400/8567
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21654595      在线人数 : 913
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/8567


    题名: Dynamic EMCUD for knowledge acquisition
    作者: Lin, SC (Lin, Shun-Chieh);Tseng, SS (Tseng, Shian-Shyong);Teng, CW (Teng, Chia-Wen)
    贡献者: Department of Information Science and Applications
    关键词: knowledge acquisition;dynamic EMCUD;dynamic knowledge;trend analysis;worm detection;EXPERT-SYSTEMS
    日期: 2008-02
    上传时间: 2010-03-26 03:03:12 (UTC+0)
    出版者: Asia University
    摘要: Due to the knowledge explosion, the new objects will be evolved in a dynamic environment. Hence, the knowledge can be classified into static knowledge and dynamic knowledge. Although many knowledge acquisition methodologies, based upon the Repertory Grid technique, have been proposed to systematically elicit useful rules from static grid from domain experts, they lack the ability of grid evolution to incrementally acquire the dynamic knowledge of new evolved objects. In this paper, we propose dynamic EMCUD, a new Repertory Grid-based knowledge acquisition methodology to elicit the embedded meanings of knowledge (embedded rules bearing on m objects and k object attributes), to enhance the ability of original EMCUD to iteratively integrate new evolved objects and new added attributes into the original Acquisition Table (AT) and original Attribute Ordering Table (AOT). The AOT records the relative importance of each attribute to each object in EMCUD to capture the embedded meanings with acceptable certainty factor value by relaxing or ignoring some minor attributes. In order to discover the new evolved objects, a collaborative framework including local knowledge based systems (KBSs) and a collaborative KBS is proposed to analyze the correlations of inference behaviors of embedded rules between multiple KBSs in a dynamic environment. Each KBS monitors the frequent inference behaviors of interesting embedded rules to construct a small AT increment to facilitate the acquisition of dynamic knowledge after experts confirming the new evolved objects. Moreover, the significance of knowledge may change after a period of time, a trend of all attributes to each evolved object is used to construct a new AOT increment to help experts automatically adjust the relative importance of each attribute to each object using time series analysis approach. Besides, three cases are considered to assist experts in adjusting the certainty factor values of the dynamic knowledge of the new evolved objects from the collection of inference logs in the collaborative KBS. To evaluate the performance of dynamic EMCUD in incrementally integrating new knowledge into the knowledge base, a worm detection prototype system is implemented. (c) 2006 Elsevier Ltd. All rights reserved.
    關聯: EXPERT SYSTEMS WITH APPLICATIONS 34 (2): 833-844
    显示于类别:[行動商務與多媒體應用學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    441.docx0KbUnknown505检视/开启
    441.doc37KbMicrosoft Word307检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈