ASIA unversity:Item 310904400/8519
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21700319      在线人数 : 513
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/8519


    题名: Incorporating Support Vector Machine for Identifying Protein Tyrosine Sulfation Sites
    作者: Chang, WC (Chang, Wen-Chi);Lee, TY (Lee, Tzong-Yi);Shien, DM (Shien, Dray-Ming);Hsu, JBK (Hsu, Justin Bo-Kai);Horng, JT (Horng, Jorng-Tzong);Hsu, PC (Hsu, Po-Chiang);Wang, TY (Wang, Ting-Yuan);Huang, HD (Huang, Hsien-Da);Pan, RL (Pan, Rong-Long)
    贡献者: Department of Bioinformatics
    关键词: protein;sulfation;prediction
    日期: 2009-11
    上传时间: 2010-03-26 02:56:34 (UTC+0)
    出版者: Asia University
    摘要: Abstract: Tyrosine sulfation is a post-translational modification of many secreted and membrane-bound proteins. It governs protein-protein interactions that are involved in leukocyte adhesion, hemostasis, and chemokine signaling. However, the intrinsic feature of sulfated protein remains elusive and remains to be delineated. This investigation presents SulfoSite, which is a computational method based on a support vector machine (SVM) for predicting protein sulfotyrosine sites. The approach was developed to consider structural information such as concerning the secondary structure and solvent accessibility of amino acids that surround the sulfotyrosine sites. One hundred sixty-two experimentally verified tyrosine sulfation sites were identified using UniProtKB/SwissProt release 53.0. The results of a five-fold cross-validation evaluation suggest that the accessibility of the solvent around the sulfotyrosine sites contributes substantially to predictive accuracy. The SVM classifier can achieve an accuracy of 94.2% in fivefold cross validation when sequence positional weighted matrix (PWM) is coupled with values of the accessible surface area (ASA). The proposed method significantly outperforms previous methods for accurately predicting the location of tyrosine sulfation sites. (C) 2009 Wiley Periodicals, Inc. J Comput Chem 30: 2526-2537, 2009
    關聯: JOURNAL OF COMPUTATIONAL CHEMISTRY 30 (15): 2526-2537
    显示于类别:[生物資訊與醫學工程學系 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    0KbUnknown570检视/开启
    23.doc45KbMicrosoft Word479检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈