ASIA unversity:Item 310904400/81279
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21701782      線上人數 : 516
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/81279


    題名: Design of a noncovalently linked bifunctional enzyme for whole-cell biotransformation..
    作者: Chao), 趙雲鵬(Yun-Peng
    貢獻者: 保健營養生技學系
    關鍵詞: Fusion protein;Biotransformation;Cohesin;Dockerin
    日期: 2014
    上傳時間: 2014-10-08 05:57:12 (UTC+0)
    摘要: Optical pure d-p-hydroxyphenylglycine (d-HPG) is a precursor for semi-synthetic antibiotics. It can be synthesized from d,l-hydroxyphenyl hydantoin (HPH) by a two-step reaction mediated by d-hydantoinase (HDT) and amidohydrolase (AHL). In this study, a bifunctional enzyme was originally created by in-frame fusion of AHL with HDT genes (AHL-HDT). However, the AHL-HDT fusion protein expressed in Escherichia coli was prone to aggregates, recognized as a frequently encountered problem for this conventional method. To address this issue, small interacting motifs, cohesin (Coh) and dockerin (Doc) domains of cellulosomes, were explored and illustrated to interact in vivo. Accordingly, Coh and Doc were fused with AHL and HDT, respectively. After co-expression in E. coli, Coh-tagged AHL and Doc-tagged HDT assembled into a soluble protein complex via the high-affinity interaction of Coh and Doc. Consequently, the protein assembly exhibited both AHL and HDT activities and a higher reaction rate than free counterparts. Whole cells expressing the protein assembly were more stable than ones with free proteins for d-HPG production, and they could be recycled six times with a conversion yield of d-HPG exceeding 90%.
    關聯: PROCESS BIOCHEMISTRY;49(7) :1122–1128
    顯示於類別:[食品營養與保健生技學系] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML297檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋