ASIA unversity:Item 310904400/81263
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21661316      線上人數 : 518
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/81263


    題名: Traditional Chinese medicine application in HIV: an in silico study
    作者: Hung-Jin Huang;Yi-Ru Jian;Calvin Yu-Chian Chen
    貢獻者: 生物與醫學資訊學系
    日期: 2014-05
    上傳時間: 2014-10-08 05:55:29 (UTC+0)
    摘要: Viral infection by human immunodeficiency virus (HIV) requires integration of viral DNA with host DNA which involves the binding of HIV integrase (IN) with its co-factor lens epithelium-derived growth factor (LEDGF/p75). Since disrupted binding of IN with LEDGF/p75 inhibits proliferation of HIV, inhibition or denaturation of IN is a possible method for inhibiting HIV replication. D77 is a known drug with demonstrated inhibition against HIV by binding to IN. Herein, we utilized D77 as a control to screen for traditional Chinese medicine (TCM) compounds that exhibit similar atomic-level characteristics. 9-Hydroxy-(10E)-octadecenoic acid and Beauveriolide I were found to have higher Dock Scores to IN than D77 through virtual screening. Multiple linear regression (R2 = 0.9790) and support vector machine (R2 = 0.9114) models consistently predicted potential bioactivity of the TCM candidates against IN. The 40 ns molecular dynamics simulation showed that the TCM compounds fulfilled the drug-like criteria of forming stable complexes with IN. Atomic-level investigations revealed that 9-hydroxy-(10E)-octadecenoic acid bound to an important residue A:Lys173, and Beauveriolide I formed stable interactions with the core LEDGF binding site and with Asn256 of the IN binding site on LEDGF. The TCM candidates also initiated loss of α-helices that could affect the functionality of IN. Taken together, the ability of 9-hydroxy-(10E)-octadecenoic acid and Beauveriolide I to (1) form stable interactions affecting IN-LEDGF binding and (2) have predicted bioactivity against IN suggests that the TCM candidates might be potential starting structures for developing compounds that may disrupt IN-LEDGF binding. An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:40.
    關聯: JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS;32(1):1-12.
    顯示於類別:[生物資訊與醫學工程學系 ] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋