English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21693533      Online Users : 579
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/7837


    Title: Toxic human IAPP oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent human IAPP induced beta-cell apoptosis in human IAPP transgenic mice
    Authors: LIN CY;Gurlo T;Kayed R;Butler AE;Haataja L;Glabe CG;Butler PC
    Date: 2007
    Issue Date: 2010-02-26
    Publisher: Asia University
    Abstract: OBJECTIVE—Islets in type 2 diabetes are characterized by a deficit in β-cells, increased β-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). The toxic form of amyloidogenic protein oligomers are distinct and smaller than amyloid fibrils and act by disrupting membranes. Using antibodies that bind to toxic IAPP oligomers (but not IAPP monomers or fibrils) and a vaccination-based approach, we sought to establish whether IAPP toxic oligomers form intra- or extracellularly and whether vaccination to induce anti-toxic oligomer antibodies prevents IAPP-induced apoptosis in human IAPP (h-IAPP) transgenic mice.

    RESEARCH DESIGN AND METHODS—Pancreas was sampled from two h-IAPP transgenic mouse models and examined by immunohistochemistry for toxic oligomers. The same murine models were vaccinated with toxic oligomers of Alzheimer β protein (AβP1–40) and anti-oligomer titers, and blood glucose and islet pathology were monitored.

    RESULTS—Toxic oligomers were detected intracellularly in ∼20–40% of h-IAPP transgenic β-cells. Vaccine induced high titers of anti–h-IAPP toxic oligomers in both transgenic models, but β-cell apoptosis was, if anything, further increased in vaccinated mice, so that neither loss of β-cell mass nor diabetes onset was delayed.

    CONCLUSIONS—IAPP toxic oligomers form in h-IAPP transgenic mouse models, and anti-toxic oligomer antibodies do not prevent h-IAPP–induced β-cell apoptosis. These data suggest that prevention of h-IAPP oligomer formation may be more useful than a vaccination-based approach in the prevention of type 2 diabetes.
    Relation: Diabetes, 56(5):1324-1332.
    Appears in Collections:[食品營養與保健生技學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    0KbUnknown361View/Open
    310904400-7837 .doc30KbMicrosoft Word212View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback