ASIA unversity:Item 310904400/7124
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21710101      在线人数 : 496
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 資訊學院 > 會議論文 >  Item 310904400/7124


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/7124


    题名: Automatic Classification of 3D Drosophila Calyx Images
    作者: Pei-Ling Liu;Henry Horng-Shing Lu;Ann-Shyn Chiang
    贡献者: Institute of Information Science, Academia Sinica.;Institute of Statistics,National Chiao-Tung University. (Taiwan);Institute of Biotechnology, National Tsing-Hua University. (Taiwan)
    关键词: Feature Extraction;SVM
    日期: 2007-12-20
    上传时间: 2010-01-12 08:23:21 (UTC+0)
    出版者: 亞洲大學資訊學院;中華電腦學會
    摘要: In this research, the main purpose is the application of an automatic classification method for six kinds of 3D Drosophila Calyx Images. We have six different kinds of image data. We will use extracted features describing the spatial dispersion and connectivity of 3D olfactory neuron
    pathway for classification. It is worth noting that much of the image data contain redundant information so we determine the essentialness of these features by cross validation accuracy. In the leave-one-out cross validation analysis, a six-category SVM classifier is three times better than random guess. Besides, there is no evidence of over-fitting, because compared to 3D spatial RST-invariant feature set alone, the 64-view Rotational Skeleton Endpoint feature set together with it raises the accuracy rate.
    關聯: 2007NCS全國計算機會議 12-20~21
    显示于类别:[資訊學院] 會議論文

    文件中的档案:

    档案 大小格式浏览次数
    7033.pdf511KbAdobe PDF683检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈