ASIA unversity:Item 310904400/5867
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21696319      在线人数 : 950
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 資訊學院 > 會議論文 >  Item 310904400/5867


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/5867


    题名: Image Annotation with Relevance Feedbacks
    作者: Cheng-Chieh Chiang (江政杰)
    贡献者: Takming University of Science and Technology
    关键词: Image Annotation;Relevance Feedback;Semi-supervised Learning
    日期: 2007-12-20
    上传时间: 2009-12-15
    出版者: 亞洲大學資訊學院;中華電腦學會
    摘要: This paper presents a novel approach for image annotation with relevance feedback to assist the user in annotating semantic labels for images. Our design for image annotation is based on a semisupervised learning for building hierarchical classifiers associated with annotation labels. We construct individual hierarchical classifiers each corresponding to one semantic label that is used for describing the semantic contents of the images. Our semi-supervised approach for learning classifiers reduces the need of training images by use of both labeled and unlabeled images. We adopt hierarchical approach for classifiers to divide the whole semantic concept associated with a label into several parts such that the complex contents in images can be simplified. We also describe some experiments to show the performance of the proposed approach.
    關聯: 2007NCS全國計算機會議 12-20~21
    显示于类别:[資訊學院] 會議論文

    文件中的档案:

    档案 大小格式浏览次数
    4083.pdf296KbAdobe PDF189检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈