English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21692434      Online Users : 837
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    ASIA unversity > 資訊學院 > 會議論文 >  Item 310904400/5817


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/5817


    Title: Fault tolerance for Hamiltonian cycle of node expansion on hypercube
    Authors: Chun-Nan Hung;Hsuan-Han Chang;Guan-Yu Shi
    Contributors: Da-Yeh University
    Keywords: Hypercube;Node expansion;Fault-tolerant;k-Hamiltonian;Spanning disjoint paths
    Date: 2007-12-20
    Issue Date: 2009-12-15
    Publisher: 亞洲大學資訊學院;中華電腦學會
    Abstract: In this paper, we construct the variant of hypercube X(Qn; fxb; xwg) with node expansion on one black node xb and one white node xw of hy- percube Qn = (Vb [ Vw;E). Let F = Fb [ Fw [ F0 be the faulty set of X(Qn; fxb; xwg) where Fb ½ Vb, Fw ½ Vw and F0 are disjoint sets. We show that X(Qn; fxb; xwg) ¡ F is Hamil- tonian if (1):jFbj = jFwj = 0; jF0j · n ¡ 2,(2):0 < jFbj = jFwj · dn 4 e¡1; jF0j · n¡1¡4jFbj, (3):0 · jFwj 6= jFbj · dn 4 e¡2; jF0j · n¡3¡4fmax, for fmax = maxfjFbj; jFwjg. We thus derive that X(Qn; xb; xw) is k-Hamiltonian for k = dn 4 e ¡ 2. We also investigate the fault tolerance for multi-
    spanning disjoint paths of complete graph Kn and hypercube Qn.
    Relation: 2007NCS全國計算機會議 12-20~21
    Appears in Collections:[資訊學院] 會議論文

    Files in This Item:

    File SizeFormat
    9028.pdf230KbAdobe PDF141View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback