English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21709506      Online Users : 191
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/5173


    Title: A Study of Image Recognition Platform Based on PCM to Identify the fingerprint of Chinese Medicine
    Authors: 張嘉麟;趙 銘
    Contributors: 逢甲大學資訊工程研究所
    Date: 2003-09-13
    Issue Date: 2009-12-09 05:25:05 (UTC+0)
    Publisher: 臺中健康暨管理學院
    Abstract: 中藥的療效和其品質有著密切的關係,若能對中藥進行質量控制,進一步中藥的療效也能相對的穩定。由於中藥對環境的影響非常敏感,而傳統之鑑別技術因人為主觀意識濃厚,無法完全解決中藥的模糊性及複雜性,因此在中藥市場上充斥著正品、非正品及偽品,同名異物、同物異名的情況非常普遍。近來科學技術利用中藥指紋圖譜去表徵一個中藥,開啟中藥鑑別的新紀元。因此本研究以Possibility c-Means (PCM)為基礎,提出一架構平台,從中藥指紋圖譜抽取重要特徵,並從已知樣品訓練模糊分類器(fuzzy classifier),以PCM 為基礎之模糊分類器將考慮檢品屬於不同品種類別的可能性(possibility)。藉以改善傳統鑑別技術之不足。本架構平台將提供具最高歸屬可能性的預測類別及依相關係數(correlation coefficient)計算檢品和預測類別間之相似度做監控上的參考。As we know, the quality of Chinese Medicine plays an important role in curative effect. The conventional identification techniques for Chinese Medicine use experiences of experts of Chinese Medicine to recognize Chinese Medicine. It is subjective and not suited to some types of Chinese Medicine. So, we make use of the concept of Possibility c-Means (PCM) to construct fuzzy classifier from the training samples. In order to improve the accurate matching rate, fuzzy classifier takes into account the possibility of test sample belong to any class. It is reasonable because the Chinese Medicine is sensitive to the environment and having the property of fuzziness.Our results of research provide possibilities of prediction classes and similarities between the unknown sample and prediction classes.
    Relation: 第六屆工程科技與中西醫學應用研討會 234-241
    Appears in Collections:[行動商務與多媒體應用學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    310904400-5173.doc38KbMicrosoft Word188View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback