ASIA unversity:Item 310904400/4764
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21661334      線上人數 : 526
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/4764


    題名: Predicting Subcellular Location of Eukaryotic Proteins using Baysian and K-Nearest Neighbor Classifier
    作者: Jeffrey J. P. Tsai;H. W. Hsiao;S. H. Chen;P.C. Chang
    關鍵詞: subcellular location prediction;na�ve Bayesian classifier;k-nearest neighbor classifier;functional domain;feature reduction
    日期: 2008-09
    上傳時間: 2009-12-02 01:04:05 (UTC+0)
    出版者: Asia University
    摘要: Biologically, the function of a protein is highly related to its subcellular location. It is of necessity to develop a reliable method for protein subcellular location prediction, especially when a large amount of proteins are to be analyzed. Various methods have been proposed to perform the task. The results, however, are not satisfactory in terms of effectiveness and efficiency. A hybrid approach combining na�ve Bayesian classifier and k-nearest neighbor classifier is proposed to classify eukaryotic proteins represented as a combination of amino acid composition, dipeptide composition, and functional domain composition. Experimental results show that the total accuracy of a set of 17,655 proteins can reach up to 91.5%.
    關聯: Journal of Information Science and Engineering 24(5):1361-1375
    顯示於類別:[生物資訊與醫學工程學系 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    0KbUnknown584檢視/開啟
    310904400-4764.doc36KbMicrosoft Word295檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋