ASIA unversity:Item 310904400/3889
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21692149      在线人数 : 751
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/3889


    题名: Apply AdaboostM1 and Bagging to improve the predict accuracy of Lymphatic disease
    作者: Xiao-Pin, Lo
    贡献者: Department of Information Science and Applications
    关键词: Data Mining;SVM;C4.5;AdaboostM1;Bagging
    日期: 2009
    上传时间: 2009-11-17 11:54:27 (UTC+0)
    出版者: Asia University
    摘要: In this research, the use of two committee machine AdaboostM1 and Bagging?s techniques for lymphatic diseases, to improve the predict accuracy of artificial intelligence data mining. The so-called lymphoma, also called Malignant Lymphoma.

    So far, the reasons for the occurrence of lymphoma is still unclear, there are many reasons may cause lymphatic disease. Therefore, the study use data mining of artificial intelligence can extracted features of the potential impact of factors from the large amounts of data, experimenting with the data from the patients who suffering from lymphatic and then established a classification model of the lymphatic.

    The methods used in this research, include two decision tree ID3 and C4.5, Support Vector Machine(SVM) and back-propagation neural network(BPNN), moreover this research try to use Resample techniques in the preprocessing step, further use committee machine(AdaboostM1 and Bagging) to up the accuracy of prediction, result show will compare with the past related literatures. This research indicated AdaboostM1 and Bagging can improve the accuracy of predict, however using AdaboostM1 we got the best predict accuracy(94.5946%) than Bagging from the 24 classifications.
    显示于类别:[行動商務與多媒體應用學系] 博碩士論文

    文件中的档案:

    档案 大小格式浏览次数
    0KbUnknown973检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈