A pattern deformational model is proposed in this paper. Pattern deformations are categorized into two types: local deformation and structural deformation. A structure-preserving local deformation can be decomposed into a syntactic deformation followed by a semantic deformation, the former being induced on primitive structures and the latter on primitive properties. Bayes error-correcting parsing algorithms are proposed accordingly which not only can perform normal syntax analysis but also can make statistical decisions. An optimum Bayes error-correcting recognition system is then formulated for pattern classification. The system can be considered as a hybrid pattern classifier which uses both syntactic and statistical pattern recognition techniques.
Relation:
IEEE Transactions on Systems, Man, and Cybernetics SMC-9:745-756