English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21651455      Online Users : 176
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/26273


    Title: 利用大眾分類標籤進行雲端學習歷程評量之研究-應用於數學課輔志工訓練
    Authors: 時文中
    Contributors: 資訊學院;資訊多媒體應用學系
    Keywords: 學習歷程評量;雲端運算;大眾分類法;課後輔導;志工訓練;Learning portfolio assessment;Cloud computing;Folksonomy;After-school tutoring;Volunteer training
    Date: 2012
    Issue Date: 2013-07-18 07:53:17 (UTC+0)
    Abstract: 服務學習是以專業知識為基礎,透過服務與反思過程,協助學生達成情意面向的教育目標。例如,讓大學生擔任課輔志工,透過課輔服務的反思,可以更深刻體會所學的專業知識。不過,課輔志工需要具備教育相關的訓練,才能勝任課輔現場的各種狀況處理。因此,如何有效進行志工教育訓練的成效評量,成為值得研究的問題。隨著數位學習的普及,數位學習的評量方式也成為關注的焦點。學習歷程評量有別於傳統測驗方式,強調從學習者學習過程所產生的檔案、作品、心得等記錄,評量其學習成效。一般的數位學習歷程評量是透過學習管理系統所記錄的量化資料,諸如:瀏覽時間、上線次數等,呈現學習者的學習歷程。然而,這些數據不容易反應出志工在訓練過程如何了解問題、尋求協助與解決問題。因此,現有的數位學習歷程評量需要加強關於質性資料的收集與分析。由於雲端運算的興起,數位學習也加入雲端的概念。各地學習者的學習歷程資料將大量累積並儲存在雲端。如何有效組織雲端上異質性的學習歷程資料並加以分析,成為一個新興的研究議題。在Web 2.0的環境,使用者普遍利用自訂的文字標籤來註記網路資源,這些標籤的集合行成了「大眾分類法」(Folksonomy)。這些標籤一方面有助於資源的搜尋與分享,另一方面也反映了使用者對這些資源的看法。本計畫提出利用「大眾分類法」的標籤資料來分析學習歷程。例如:透過時間序列的分析,可以知道志工不同時期所關注的主題。這個構想的主要優點是,標籤資料是現成的且不斷累積,收集容易。相對的,它的困難在於雲端平台所累積的標籤資料量多且異質,需要設計有效的資料組織方法,以方便整理分析。本計畫預計以一年期間研製一個適用於雲端環境的標籤組織方法,並應用在課輔志工訓練的學習歷程評量。計畫工作重點如下: . 適用於雲端環境的標籤組織方法之研製。 . 課輔志工訓練過程的標籤資料收集與分析。 . 課輔志工訓練成效之學習歷程評量。本計畫擬研製的雲端學習歷程評量方法,預期可從另一觀點驗證目前執行中的另一計畫「雲端課輔服務學習平台之研製-應用於國小數學課輔志工訓練與評量」的評量結果。此外,本計畫的成果也將支援校內外的志工訓練,邁向「志工大學」的目標。

    Service Learning is based on professional knowledge to assist students to achieve affective educational objective by service and reflection. For example, college students can further experience what they have learnt by serving as voluntary tutors, through reflection in tutoring services. However, voluntary tutors need educational training to be able to handle various situations during the tutoring process. Therefore, how to conduct effective training and assessment for voluntary tutors has become a research problem. As e-learning becomes popular, the assessment of e-learning has attracted a lot of attention. Portfolio assessment is focused on files, works and reports produced in the learning process. Common web-based portfolio assessment is based on data recorded by learning management systems, such as browsing time and usage. However, these data cannot reflect how tutors ask for help and solve problems in the training process. In addition, the rising of cloud computing results in the trend of cloud learning. Hence, organizing and analyze heterogeneous portfolio data on cloud has become an important issue. In Web 2.0 environments, users usually annotate web resources by free-form tags, which are collectively called folksonomy. These tags help search and share resources, and reflect their viewpoints on the resources. The idea of this project is to analyzing learning portfolio using folksonomic tags. The main advantage is that the collecting of tags is easy. In contrast, it is difficult to organize a large amount of tags from heterogeneous sources. The expected results of this one-year project are listed as follows: . designing and implementing a method to organize tags suitable for cloud environments; . collecting and analyzing tags during the tutor training process; and . conducting portfolio assessment for tutor training. The proposed approach is expected to evaluate the other related project from a different viewpoint. As part of a “Volunteer University”, this project will support volunteer train ing of Asia University and other universities.
    Appears in Collections:[行動商務與多媒體應用學系] 科技部研究計畫

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML601View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback