ASIA unversity:Item 310904400/25238
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21662896      在线人数 : 219
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/25238


    题名: Chloride intracellular channel 4 involves in the reduced invasiveness of cancer cells treated by photodynamic therapy.
    作者: Chiang, PC;Chiang, PC;鄒瑞煌;Chou, Ruey-Hwang;Chien, HF;Chien, HF;Tsai, T;Tsai, T;Chen, CT;Chen, CT
    贡献者: 生物科技學系
    日期: 2013-01
    上传时间: 2013-07-11 05:56:29 (UTC+0)
    摘要: BACKGROUND AND OBJECTIVES:
    The mechanisms of photodynamic therapy (PDT) have been studied on the cellular and tissue levels. However, the cellular behaviors of cancer cells survived from PDT are still not clear. Previously, we have found that PDT-derived variants A375/3A5 and A375/6A5 have reduced invasion ability. This study attempted to further elucidate the possible molecules associated with the altered invasiveness in the PDT-derived variants and cancer cells treated with PDT.
    STUDY DESIGN/MATERIALS AND METHODS:
    Scratch wound healing assay and invasion assay were performed to evaluate the migration and invasion ability of human A375 melanoma and MDA-MB-231 breast adenocarcinoma cells. Single colony selection and microarray analysis were performed to examine the differentially expressed transcripts in parental A375 and PDT-derived variants. RT-PCR and Western blots analysis were performed to examine the expression levels of matrix metalloproteinase 9 (MMP9) and chloride intracellular channel 4 (CLIC4). The MMP9 activity was examined by Zymography assay. CLIC4 expressing construct was used to examine the influence on MMP9 expression and invasion ability of cancer cells treated with PDT.
    RESULTS:
    Correlated with the reduced invasiveness, we found that A375/3A5 and A375/6A5 cells have decreased production of MMP9. Microarray analysis and RT-PCR showed CLIC4 was down-regulated in the PDT-derived variants. Furthermore, down-regulation of CLIC4 and MMP9 was found in cancer cells treated with PDT. Transfection of surviving cancer cells with a plasmid vector encoding CLIC4 increased MMP9 expression and cell invasion. Furthermore, overexpression of CLIC4 in A375 and MDA-MB-231 cancer cells constrains PDT-induced suppression of invasiveness.
    CONCLUSION:
    Our results showed that the reduced expression of CLIC4 could further down-regulate MMP9 and result in the suppression of invasion in cancer cells treated with PDT. These results provide an insight into a new mechanism by which PDT affects the metastatic potential of cancer cells through down-regulation of MMP9 by CLIC4.
    BACKGROUND AND OBJECTIVES:
    The mechanisms of photodynamic therapy (PDT) have been studied on the cellular and tissue levels. However, the cellular behaviors of cancer cells survived from PDT are still not clear. Previously, we have found that PDT-derived variants A375/3A5 and A375/6A5 have reduced invasion ability. This study attempted to further elucidate the possible molecules associated with the altered invasiveness in the PDT-derived variants and cancer cells treated with PDT.
    STUDY DESIGN/MATERIALS AND METHODS:
    Scratch wound healing assay and invasion assay were performed to evaluate the migration and invasion ability of human A375 melanoma and MDA-MB-231 breast adenocarcinoma cells. Single colony selection and microarray analysis were performed to examine the differentially expressed transcripts in parental A375 and PDT-derived variants. RT-PCR and Western blots analysis were performed to examine the expression levels of matrix metalloproteinase 9 (MMP9) and chloride intracellular channel 4 (CLIC4). The MMP9 activity was examined by Zymography assay. CLIC4 expressing construct was used to examine the influence on MMP9 expression and invasion ability of cancer cells treated with PDT.
    RESULTS:
    Correlated with the reduced invasiveness, we found that A375/3A5 and A375/6A5 cells have decreased production of MMP9. Microarray analysis and RT-PCR showed CLIC4 was down-regulated in the PDT-derived variants. Furthermore, down-regulation of CLIC4 and MMP9 was found in cancer cells treated with PDT. Transfection of surviving cancer cells with a plasmid vector encoding CLIC4 increased MMP9 expression and cell invasion. Furthermore, overexpression of CLIC4 in A375 and MDA-MB-231 cancer cells constrains PDT-induced suppression of invasiveness.
    CONCLUSION:
    Our results showed that the reduced expression of CLIC4 could further down-regulate MMP9 and result in the suppression of invasion in cancer cells treated with PDT. These results provide an insight into a new mechanism by which PDT affects the metastatic potential of cancer cells through down-regulation of MMP9 by CLIC4.
    關聯: LASERS IN SURGERY AND MEDICINE;45(1):38-47.
    显示于类别:[生物科技學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML302检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈