English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21651841      Online Users : 494
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/18977


    Title: Effective Pattern Discovery for Text Mining
    Authors: 吳勝堂;Wu, Sheng-Tang
    Contributors: 資訊多媒體應用學系
    Date: 2012-01
    Issue Date: 2012-11-26 07:11:37 (UTC+0)
    Abstract: Many data mining techniques have been proposed for mining useful patterns in text documents. However, how to effectively use and update discovered patterns is still an open research issue, especially in the domain of text mining. Since most existing text mining methods adopted term-based approaches, they all suffer from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern (or phrase)-based approaches should perform better than the term-based ones, but many experiments do not support this hypothesis. This paper presents an innovative and effective pattern discovery technique which includes the processes of pattern deploying and pattern evolving, to improve the effectiveness of using and updating discovered patterns for finding relevant and interesting information. Substantial experiments on RCV1 data collection and TREC topics demonstrate that the proposed solution achieves encouraging performance.
    Relation: IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
    Appears in Collections:[行動商務與多媒體應用學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML460View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback