English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21693577      Online Users : 592
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/18913


    Title: Sequential Pattern Mining and Nonmonotonic Reasoning for Intelligent Information Agents
    Authors: 吳勝堂;Wu, Sheng-Tang
    Contributors: 資訊多媒體應用學系
    Keywords: Sequential pattern mining;nonmonotonic reasoning;belief revision;information agents
    Date: 2007-06
    Issue Date: 2012-11-26 07:10:34 (UTC+0)
    Abstract: With the explosive growth of information available on the Internet, more effective data mining and data reasoning mechanism is required to process the sheer volume of information. Belief revision logic offers the expressive power to represent information retrieval contexts, and it also provides a sound inference mechanism to model the nonmonotonicity arising in changing retrieval contexts. Contextual knowledge for information retrieval can be extracted via efficient sequential pattern mining. We present a pattern taxonomy extraction model which efficiently performs the task of discovering descriptive frequent sequential patterns by pruning the noisy associations. This paper illustrates a novel approach of integrating the sequential data mining method into the belief revision based adaptive information agents to improve the agents' learning autonomy and prediction power. Initial experiments show that our belief revision logic and sequential pattern mining based intelligent information agents outperform the vector space model based information agents. Our work opens the door to the development of next generation of intelligent information agents to alleviate the information overload problem.
    Relation: INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE
    Appears in Collections:[行動商務與多媒體應用學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML315View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback