ASIA unversity:Item 310904400/18712
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21701796      在线人数 : 522
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/18712


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/18712


    题名: A comparative assessment of classification methods for resonance frequency prediction of Langevin piezoelectric transducers
    作者: 陳永欽;Chen, Yeong-Chin
    贡献者: 資訊工程學系
    关键词: Machine learning;Intelligence method;Mega-fuzzification;Acoustical;Langevin;Piezoelectric transducer
    日期: 2011-07
    上传时间: 2012-11-26 05:57:28 (UTC+0)
    摘要: A Langevin piezoelectric transducer is used as a physical element for transmitting and receiving sound waves. The operating frequency of a transducer determines the distance that the sound wave can travel, so it is important to measure it. Due to the fact the structure of a transducer is quite complicated, it is quite difficult to estimate the precise physical parameters for the simulation model. Therefore, it takes a long time to measure the resonance frequency in the laboratory and fix the parameters by trial and error methods. This study applies a learning method to estimate a transducer frequency instead by trial and error experiments. The learning methods applied and compared including artificial neural network, support vector machine, C4.5, neuro-fuzzy, and ega-fuzzification. Compared with the theoretical one-dimensional model (simple lump element model), the results indicate that a learning method is an efficient way to estimate the piezoelectric transducer resonance frequency. The mega-fuzzification method is the best compared with other methods in this study.
    關聯: APPLIED MATHEMATICAL MODELLING;35(7):3334–3344
    显示于类别:[資訊工程學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML360检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈