ASIA unversity:Item 310904400/17594
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21692978      在线人数 : 1065
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 管理學院 > 財務金融學系 > 期刊論文 >  Item 310904400/17594


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/17594


    题名: The Efficacy of Model-Based Volatility Forecasting: Empirical Evidence in Taiwan
    作者: 臧仕維;Tzang, Shyh-Weir;Chih-Hsing Hung;So-De Hsyu
    贡献者: 財務金融學系
    关键词: Realized volatility;range volatility;semiparametric fractional autoregressive model;multiplicative error model;GJR-GARCH model;variance gamma garch model
    日期: 2009-04
    上传时间: 2012-11-26 02:37:31 (UTC+0)
    摘要: The paper adopts several time series models to assess the forecasting efficiency of future realized volatility in Taiwan stock market. The paper finds that, for 1-day directional accuracy forecast performance, semiparametric fractional autoregressive model (SEMIFAR, Beran and Ocker, 2001) ranks highest with 78.52% hit accuracy, followed by multiplicative error model (MEM, Engle, 2002), and augmented GJR-GARCH model. For 1-day forecasting errors evaluated by root mean squared errors (RMSE), GJR-GARCH model augmented with high-low range volatility ranks the highest, followed by SEMIFAR and MEM model, both of which, however, outperform augmented GJR-GARCH by the measure of mean absolute value (MAE) and p-statistics (Blair, Poon and Taylor, 2001).
    關聯: International Research Journal of Finance and Economics
    显示于类别:[財務金融學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Tzang_The Efficacy of Model-Based Volatility Forecasting Empirical_irjfe_26_02.pdf170KbAdobe PDF468检视/开启
    index.html0KbHTML390检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈