Fucoxanthin is one of the most abundant carotenoids found in Undaria pinnatifida and has been shown to inhibit tumor proliferation in vitro. However, the mechanisms underlying the anti-cancer effects of fucoxanthin are unclear. In this study, we hypothesized that fucoxanthin may cause cell cycle arrest and enhance gap junctional intercellular communication (GJIC) in SK-Hep-1 human hepatoma cells. Data revealed that fucoxanthin (1–20 μM) strongly and concentration-dependently inhibited the proliferation of SK-Hep-1 cells at 24 h of incubation, whereas fucoxanthin facilitated the growth of a murine embryonic hepatic (BNL CL.2) cells at 24 h of incubation and only slightly slowed the cell proliferation at 48 h. In SK-Hep-1 cells, fucoxanthin caused cell cycle arrest at G0/G1 phase and induced cell apoptosis, as evidenced by increased subG1 cells and induction of DNA strand breaks. Using scrape loading-dye-transfer assay, fucoxanthin was found to significantly enhance GJIC of SK-Hep-1 cells without affecting that of BNL CL.2 cells. In addition, fucoxanthin significantly increased protein and mRNA expressions of connexin 43 (Cx43) and connexin 32 (Cx32) in SK-Hep-1 cells. Moreover, fucoxanthin markedly increased the concentration of intracellular calcium levels in SK-Hep-1 cells. Thus, fucoxanthin is specifically antiproliferative against SK-Hep-1 cells, and the effect is associated with upregulation of Cx32 and Cx43, which enhances GJIC of SK-Hep-1 cells. The enhanced GJIC may be responsible for the increase of the intracellular calcium level, which then causes cell cycle arrest and apoptosis.