English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21695720      Online Users : 707
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/16978


    Title: Cloning and characterization of the mouse histone deacetylase-2 gene.
    Authors: 姚雅莉;Yao, Ya-Li
    Contributors: 生物科技學系
    Date: 1998
    Issue Date: 2012-11-23 09:19:02 (UTC+0)
    Abstract: Histone deacetylase-2 (HDAC2) is a component of a complex that mediates transcriptional repression in mammalian cells. A mouse HDAC2 cDNA was used to identify several recombinant clones containing the entire mouse HDAC2 gene. The mouse HDAC2 gene spans over 36 kilobase pairs and is composed of 14 exons (ranging from 58 to 362 nucleotides in length) and 13 introns (ranging from 75 base pairs to 19 kilobase pairs in length). Primer extension analysis with total RNA from NIH3T3 cells revealed a major transcriptional start site at 221 base pairs 5' of the ATG translational start codon. Upstream of the transcriptional start site, no canonical TATA box was found, but binding sites for several known transcription factors were identified. Transient transfection studies with 5' deletion mutants localized the promoter to no more than 76 base pairs upstream from the major transcriptional start site. Fluorescence in situ hybridization mapped mouse HDAC2 to chromosomal location 10B1, which is in close proximity to the growth factor-inducible gene fisp-12. Information concerning the genomic organization and promoter of HDAC2 will be useful in studies of the regulation of histone deacetylase activities, which in turn are important in studies of the regulation of transcriptional repression in mammalian cells.
    Relation: Journal of Biological Chemistry, 273(44):28921-28930.
    Appears in Collections:[生物科技學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML259View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback