ASIA unversity:Item 310904400/16915
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21659910      在线人数 : 195
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/16915


    题名: Robust and alternative estimators for “better” estimates for expenditures and other “long tail” distributions
    作者: ;Huan, Tzung-Cheng;Beaman, Jay;Chang, Liang-Han;許世芸;Hsu, Shih-Yun
    贡献者: 休閒與遊憩管理學系
    关键词: Robust;Estimation;Long-tail distribution;Unbiased;Reduced variability
    日期: 2008-08
    上传时间: 2012-11-23 09:18:23 (UTC+0)
    摘要: A 2006 Tourism Management article proposes using specific robust estimators to determine “better” estimated means for long-tail distributions; that is for skewed distributions with valid large responses heavily influencing the mean. Getting better estimates matters because long-tail distributions occur frequently for amounts and quantities. In addition, long-tail distribution sample means and totals can be so variable using those prompts concerns. However, low variability robust estimates of means and totals can be badly biased. Therefore, a focus of this paper is obtaining relatively low variability estimates that are not “too” biased. Real data are used to illustrate attributes of long-tail distributions. Results show some robust estimators suggested for producing better estimates are badly biased and therefore not better. Three ways of obtaining lower variability estimated means and totals that are not “too” biased are discussed. Practical and research implications of the ideas presented and of results obtained are discussed
    關聯: TOURISM MANAGEMENT
    显示于类别:[休閒與遊憩管理學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML340检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈